• Title/Summary/Keyword: Voxel-based morphometry

Search Result 24, Processing Time 0.025 seconds

A voxel based morphometry study in Alzheimer's disease

  • Rahyeong Juh;Taesuk Suh;Boyoung Choe;Lee, Changuk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.46-46
    • /
    • 2003
  • Several MRI studies have reported reductions in temporal lobe volumes in Alzheimer´s disease (AD). Measures have been usually obtained with regions of interest (ROI) drawn manually on selected medial and lateral portions of the temporal lobes, with variable choices of anatomical borders across different studies. We used the automated voxel based morphometry (VBM) approach to investigate gray matter abnormalities over the entire extension of the temporal lobe in 11 AD patients (MMSE 14 - 25) and 11 healthy controls. Foci of significantly reduced gray matter volume in AD patients were detected in both medial and lateral temporal regions, most significantly in the right and left posterior parahippocampal gyri. At a more flexible statistical threshold (P<0.001, uncorrected for multiple comparisons), circumscribed foci of significant gray matter reduction were also detected in the right amygdala/enthorinal cortex, the anterior and posterior borders of the superior temporal gyrus bilaterally, and the anterior portion of the left middle temporal gyrus. These VBM results confirm previous findings of temporal lobe atrophic changes in AD, and suggest that these abnormalities may be confined to specific sites within that lobe, rather than showing a widespread distribution.

  • PDF

A Voxel-Based Morphometry of Gray Matter Reduction in Patients with Dementia of the Alzheimer's Type (화소 기반 형태분석 방법을 이용한 알츠하이머 치매환자의 회백질 용적감소의 정량적 분석)

  • Lim, Hyun-Kook;Choi, Eun-Hyung;Lee, Chang-Uk
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Objectives : The purpose of this study was to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphpmetry(VBM) analysis for lateralizing clinically significant brain regions in dementia of Alzheimer's type patients compared to healthy group. Methods : MR T1-weighted images of the 20 dementia of Alzheimer's type patients were compared with those of the 20 normal controls. Images were transformed to standard MNI space. In order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was performed using statistical parametric mapping software(SPM2). Results : Gray matter volume was significantly reduced in the bilateral parahippocampal gyri, Lt. anterior cingulate gyrus, Lt. posterior cingulate gyrus, bilateral superior temporal gyri Lt. middle temporal gyrus, Lt. superior, bilateral middle, Rt. anterior frontal gyri and Rt. precuneus in dementia of Alzheimer's type patient group. Conclusions : These VBM results confirm previous findings of temporal lobe and limbic lobe atrophic changes in dementia of Alzheimer's type, and suggest that these abnormalities may be confined to specific sites within that lobe, rather than showing a widespread distribution.

  • PDF

A Voxel-Based Morphometry of Gray Matter Volume Reduction in Patients with Mild Cognitive Impairment (화소 기반 형태분석 방법을 이용한 경도인지장애 환자의 회백질 용적감소의 정량적 분석)

  • Yoo, Bo-Eun;Hahn, Chang-Tae;Lee, Chang-Uk;Hong, Seung-Chul;Lim, Hyun-Kook
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.4
    • /
    • pp.232-238
    • /
    • 2011
  • Objectives Optimized voxel based morphometry (VBM) has been increasingly applied to investigate differences in the brain morphology between a group of patients with mild cognitive impairment (MCI) and control subjects. Optimized VBM permits comparison of gray matter (GM) volume at voxel-level from the entire brain. The purpose of this study was to assess the regional GM volume change measured by optimized VBM in MCI subjects compared to controls. Methods Twenty patients with MCI and 20 control subjects with normal cognition were recruited for this study. We applied the optimized VBM protocol to the image data including study-specific template and the modulation of the data with the Jacobian determinants. GM volume differences between the MCI subjects and the control subjects and their correlations with the neuropsychological performances were investigated. Results Optimized VBM analysis revealed GM volume reduction in hippocampus, precentral gyrus, insula and parietal operculum in the MCI group compared to the control group (family wise error corrected p < 0.05). Korean version of the Consortium to Establish a Registry for Alzheimer's disease (CERAD-K) word list recall scores were significantly correlated with the GM volumes of hippocampus, precuneus and posterior cingulate in the MCI group (FWE corrected p < 0.05). Conclusions The results confirm previous findings of atrophic changes in medial temporal lobe and parietal lobe in the MCI group and suggest that these abnormalities may be related with cognitive decline and prognosis in patients with MCI.

Assessing Cerebral Oxygen Metabolism Changes in Patients With Preeclampsia Using Voxel-Based Morphometry of Oxygen Extraction Fraction Maps in Magnetic Resonance Imaging

  • Qihao Zhang;Chaofan Sui;Junghun Cho;Linfeng Yang;Tao Chen;Bin Guo;Kelly McCabe Gillen;Jing Li;Lingfei Guo;Yi Wang
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.324-337
    • /
    • 2023
  • Objective: The objective of this study was to analyze the different brain oxygen metabolism statuses in preeclampsia using magnetic resonance imaging and investigate the factors that affect cerebral oxygen metabolism in preeclampsia. Materials and Methods: Forty-nine women with preeclampsia (mean age 32.4 years; range, 18-44 years), 22 pregnant healthy controls (PHCs) (mean age 30.7 years; range, 23-40 years), and 40 non-pregnant healthy controls (NPHCs) (mean age 32.5 years; range, 20-42 years) were included in this study. Brain oxygen extraction fraction (OEF) values were computed using quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level-dependent magnitude-based OEF mapping (QSM + quantitative blood oxygen level-dependent imaging or QQ) obtained with a 1.5-T scanner. Voxel-based morphometry (VBM) was used to investigate the differences in OEF values in the brain regions among the groups. Results: Among the three groups, the average OEF values were significantly different in multiple brain areas, including the parahippocampus, multiple gyri of the frontal lobe, calcarine, cuneus, and precuneus (all P-values were less than 0.05, after correcting for multiple comparisons). The average OEF values of the preeclampsia group were higher than those of the PHC and NPHC groups. The bilateral superior frontal gyrus/bilateral medial superior frontal gyrus had the largest size of the aforementioned brain regions, and the OEF values in this area were 24.2 ± 4.6, 21.3 ± 2.4, and 20.6 ± 2.8 in the preeclampsia, PHC, and NPHC groups, respectively. In addition, the OEF values showed no significant differences between NPHC and PHC. Correlation analysis revealed that the OEF values of some brain regions (mainly involving the frontal, occipital, and temporal gyrus) were positively correlated with age, gestational week, body mass index, and mean blood pressure in the preeclampsia group (r = 0.361-0.812). Conclusion: Using whole-brain VBM analysis, we found that patients with preeclampsia had higher OEF values than controls.

Evaluation of White Matter Abnormality in Mild Alzheimer Disease and Mild Cognitive Impairment Using Diffusion Tensor Imaging: A Comparison of Tract-Based Spatial Statistics with Voxel-Based Morphometry (확산텐서영상을 이용한 경도의 알츠하이머병 환자와 경도인지장애 환자의 뇌 백질의 이상평가: Tract-Based Spatial Statistics와 화소기반 형태분석 방법의 비교)

  • Lim, Hyun-Kyung;Kim, Sang-Joon;Choi, Choong-Gon;Lee, Jae-Hong;Kim, Seong-Yoon;Kim, Heng-Jun J.;Kim, Nam-Kug;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.115-123
    • /
    • 2012
  • Purpose : To evaluate white matter abnormalities on diffusion tensor imaging (DTI) in patients with mild Alzheimer disease (AD) and mild cognitive impairment (MCI), using tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM). Materials and Methods: DTI was performed in 21 patients with mild AD, in 13 with MCI and in 16 old healthy subjects. A fractional anisotropy (FA) map was generated for each participant and processed for voxel-based comparisons among the three groups using TBSS. For comparison, DTI data was processed using the VBM method, also. Results: TBSS showed that FA was significantly lower in the AD than in the old healthy group in the bilateral anterior and right posterior corona radiata, the posterior thalamic radiation, the right superior longitudinal fasciculus, the body of the corpus callosum, and the right precuneus gyrus. VBM identified additional areas of reduced FA, including both uncinates, the left parahippocampal white matter, and the right cingulum. There were no significant differences in FA between the AD and MCI groups, or between the MCI and old healthy groups. Conclusion: TBSS showed multifocal abnormalities in white matter integrity in patients with AD compared with old healthy group. VBM could detect more white matter lesions than TBSS, but with increased artifacts.

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

Reduced Gray Matter Volume of Auditory Cortical and Subcortical Areas in Congenitally Deaf Adolescents: A Voxel-Based Morphometric Study

  • Tae, Woo-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: Several morphometric studies have been performed to investigate brain abnormalities in congenitally deaf people. But no report exists concerning structural brain abnormalities in congenitally deaf adolescents. We evaluated the regional volume changes in gray matter (GM) using voxel-based morphometry (VBM) in congenitally deaf adolescents. Materials and Methods: A VBM8 methodology was applied to the T1-weighted magnetic resonance imaging (MRI) scans of eight congenitally deaf adolescents (mean age, 15.6 years) and nine adolescents with normal hearing. All MRI scans were normalized to a template and then segmented, modulated, and smoothed. Smoothed GM data were tested statistically using analysis of covariance (controlled for age, gender, and intracranial cavity volume). Results: The mean values of age, gender, total volumes of GM, and total intracranial volume did not differ between the two groups. In the auditory centers, the left anterior Heschl's gyrus and both inferior colliculi showed decreased regional GM volume in the congenitally deaf adolescents. The GM volumes of the lingual gyri, nuclei accumbens, and left posterior thalamic reticular nucleus in the midbrain were also decreased. Conclusions: The results of the present study suggest that early deprivation of auditory stimulation in congenitally deaf adolescents might have caused significant underdevelopment of the auditory cortex (left Heschl's gyrus), subcortical auditory structures (inferior colliculi), auditory gain controllers (nucleus accumbens and thalamic reticular nucleus), and multisensory integration areas (inferior colliculi and lingual gyri). These defects might be related to the absence of general auditory perception, the auditory gating system of thalamocortical transmission, and failure in the maturation of the auditory-to-limbic connection and the auditorysomatosensory-visual interconnection.

The Analysis of relation to brain iron deposition of Parkinson's Disease using Quantitative Susceptibility Mapping (정량적 자화율 맵핑을 통한 뇌 철분 침착과 파킨슨병의 연관성 분석)

  • Gyu-Ri Jeon;Han-Gyul Lee;Seung-won Kwon;Seung-Yeon Cho;Woo-Sang Jung;Sang-Kwan Moon;Jung-Mi Park;Chang-Nam Ko;Seong-Uk Park
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.150-164
    • /
    • 2024
  • Objectives: This study aimed to investigate the levels of brain iron deposition in Parkinson's disease (PD) patients using Quantitative Susceptibility Mapping (QSM) and to determine whether distinctions compared to the general population exist. Furthermore, we examined potential variations in iron deposition among different PD subtypes. Methods: Structural brain imaging was conducted on 75 participants at Gangdong Kyung Hee University Hospital between August 2017 and May 2020. PD patients were categorized into Tremor Dominant (TD) and Postural Instability and Gait Difficulty (PIGD) subtypes. Voxel-based morphometry and QSM were employed to compare voxel-wise magnetic susceptibility across the entire brain between Normal Controls (NC) and PD groups. Subsequently, QSM values were compared between TD and PIGD groups. Results: QSM values were compared among 46 PD patients and 23 normal controls, as well as between TD (n=22) and PIGD (n=24) groups. Voxel-based QSM analysis revealed no significant differences between groups. Similarly, ROI-based QSM analysis showed no significant distinctions. Conclusions: No significant variations were observed between the PD patient group, NC group, or PD subtypes. This study systematically compared QSM values across a broad range of brain regions potentially linked to PD pathology. Additionally, the subdivision of the PD group into TD and PIGD subtypes for QSM-based iron deposition analysis represents a meaningful and innovative approach.