• Title/Summary/Keyword: Voxel model

Search Result 97, Processing Time 0.025 seconds

Cone-beam CT superimposition and visualization using open-source softwares (오픈-소스 소프트웨어를 이용한 콘빔 전산화단층영상의 중첩 및 시각화)

  • Jeon, Woo-Ram;Lim, Sung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.56 no.10
    • /
    • pp.538-547
    • /
    • 2018
  • ITK-SNAP (http://www.itksnap.org) and 3D Slicer (CMFreg extension module; www.slicer.org) are open-source softwares which can be used for superimposition of cone-beam CT images. For superimposition, segmentation of bone is done with ITK-SNAP, and then voxel based superimposition of CBCT images can be performed using 3D Slicer. 3D Slicer has various visualization modules which are not provided in common commercial programs. 'Models' module is used to visualize two overlapping three-dimensional images, and this allows various visualizations by changing view mode and color of the model. In addition, differences between two CBCT images can be represented in a color map using 'ShapePopulationViewer' module. This report introduces how to superimpose and visualize CBCT images using ITK-SNAP and 3D Slicer, and the usefulness and limitations of both softwares will be discussed in comparison with commercial softwares.

  • PDF

Three-Dimensional Digital-Mold Modeling and Sand-Printing for Replication of Bronze Mirror

  • Jo, Young Hoon;Lee, Jungmin
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • To extend the application of digital technology to the replication of artifacts, meticulous details of the process and the diversity of three-dimensional (3D) printing output materials need to be supplemented. Thus, in this study, a bronze mirror with Hwangbichangcheon inscription was digitalized by 3D scanning, converted into a voxel model, and virtual conservation treatment was performed using a haptic device. Furthermore, the digital mold of the bronze mirror completed by Boolean modeling was printed using a 3D sand-printer. Such contactless replication based on digital technology reflects the stability, precision, expressivity, collectivity, durability, and economic feasibility of artifacts. Its application can be further extended to cultural products as well as such areas as education, exhibition, and research. It is expected to be in high demand for metal artifacts that require casting. If empirical studies through experimental research on casting are supplemented in the future, it could extend the application of digital technology-based contactless replication methods.

Non-self-intersecting Multiresolution Deformable Model (자체교차방지 다해상도 변형 모델)

  • Park, Ju-Yeong;Kim, Myeong-Hui
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • This paper proposes a non-self-intersecting multiresolution deformable model to extract and reconstruct three-dimensional boundaries of objects from volumetric data. Deformable models offer an attractive method for extracting and reconstructing the boundary surfaces. However, convensional deformable models have three limitations- sensitivity to model initialization, difficulties in dealing with severe object concavities, and model self-intersections. We address the initialization problem by multiresolution model representation, which progressively refines the deformable model based on multiresolution volumetric data in order to extract the boundaries of the objects in a coarse-to-fine fashion. The concavity problem is addressed by mesh size regularization, which matches its size to the unit voxel of the volumetric data. We solve the model self-intersection problem by including a non-self-intersecting force among the customary internal and external forces in the physics-based formulation. This paper presents results of applying our new deformable model to extracting a sphere surface with concavities from a computer-generated volume data and a brain cortical surface from a MR volume data.

  • PDF

Automatic Analysis of Bone Formation in a Mouse Model of Frontal Bone Defect (전두골 결손 마우스 모델의 골형성 자동 분석)

  • Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.997-1007
    • /
    • 2015
  • In this paper, we propose a method for automatically analyzing the bone formation in a mouse model of frontal bone defect. We perforate two holes of 0.8mm diameter in the frontal bone and observe the bone formation process using a micro CT. Because the conventional analysis software of the micro CT does not support automatic analysis of the bone formation status, we have to use a manual analysis method. However the manual analysis is very cumbersome and requires a lot of time, we propose an automatic analysis method. It rotates the image around three axes directions so that the mouse's skull come into regular position. It calculates the cumulative image of the voxel values for the perforated bone surface. It estimates the hole location by finding the darkest point in the cumulative image. The proposed method was applied to 24 CT images of saline administration group and PTH administration group and hole location was estimated. BV/TV index was calculated for the estimated hole to evaluate the bone formation status. Experimental results showed that bone formation process is more active in PTH administration group. The method proposed in this paper could replace successfully the cumbersome and time consuming manual job.

POSITION AND POSTURE ESTIMATION OF 3D-OBJECT USING COLOR AND DISTANCE INFORMATION

  • Ji, Hyun-Jong;Takahashi, Rina;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.535-540
    • /
    • 2009
  • Recently, autonomous robots which can achieve the complex tasks have been required with the advance of robotics. Advanced robot vision for recognition is necessary for the realization of such robots. In this paper, we propose a method to recognize an object in the actual environment. We assume that a 3D-object model used in our proposal method is the voxel data. Its inside is full up and its surface has color information. We also define the word "recognition" as the estimation of a target object's condition. This condition means the posture and the position of a target object in the actual environment. The proposal method consists of three steps. In Step 1, we extract features from the 3D-object model. In Step 2, we estimate the position of the target object. At last, we estimate the posture of the target object in Step 3. And we experiment in the actual environment. We also confirm the performance of our proposal method from results.

  • PDF

A Study of a Physical Property Setting Method for Haptic Rendering of Deformable Volumetric Objects (가변형 볼륨 물체의 햅틱 렌더링을 위한 물리적 속성 결정 방법의 연구)

  • Kim, Jae-Oh;Kim, Sang-Youn
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1146-1159
    • /
    • 2008
  • This paper proposes a method for determining material property of a haptic model which represents the haptic behavior of a target object. This paper also presents a haptic rendering framework. We adapt elastography to obtain the physical property of a target object. One of the key differences between the proposed framework and a traditional method is that the physical property of the target object can be easily set into a haptic model. For evaluating the proposed method, we construct a real-time palpation prototype simulator. In our work, a human liver is selected as a target object and the liver is represented by Shape-retaining Chain Linked Model(S-chain model) for satisfying the real-time performance. We conduct experiments whether a user easily distinguishes abnormal portions from normal portions. From the experimental results, we evaluate that the proposed method provides the discriminable force to users in real-time.

  • PDF

Virtual Navigation of Blood Vessels using 3D Curve-Skeletons (3차원 골격곡선을 이용한 가상혈관 탐색 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

Ambient Occlusion Volume Rendering using Multi-Range Statistics (다중 영역 통계량을 이용한 환경-광 가림 볼륨 가시화)

  • Nam, Jinhyun;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • This study presents a volume rendering method using ambient occlusion which is one of global illumination methods. By considering the volume density distribution as normal distribution, ambient occlusion can be calculated at real-time speed regardless of modification of opacity transfer function. We calculate and store the averages and standard deviations of densities in a block centered at each voxel in pre-processing time. In rendering process, we determine the illumination value by estimating the nearby opacity. We generalized theoretical model and generated better quality images improving our previous research. In detail, various shapes of transfer function can be used due to the proposed equation model. Moreover, we introduced a multi-range model to give nearer objects more weight. As the result, more realistic volume rendering image can be generated at real-time speed by mixing local and ambient occlusion shading.

Anonymity of Medical Brain Images (의료 두뇌영상의 익명성)

  • Lee, Hyo-Jong;Du, Ruoyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • The current defacing method for keeping an anonymity of brain images damages the integrity of a precise brain analysis due to over removal, although it maintains the patients' privacy. A novel method has been developed to create an anonymous face model while keeping the voxel values of an image exactly the same as that of the original one. The method contains two steps: construction of a mockup brain template from ten normalized brain images and a substitution of the mockup brain to the brain image. A level set segmentation algorithm is applied to segment a scalp-skull apart from the whole brain volume. The segmented mockup brain is coregistered and normalized to the subject brain image to create an anonymous face model. The validity of this modification is tested through comparing the intensity of voxels inside a brain area from the mockup brain with the original brain image. The result shows that the intensity of voxels inside from the mockup brain is same as ones from an original brain image, while its anonymity is guaranteed.

Effects of Size and Permittivity of Rat Brain on SAR Values at 900 MHz and 1,800 MHz

  • Hyun Jong-Chul;Oh Yi-Sok
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • The objective of this study is to evaluate the effects of size and permittivity on the specific absorption rate(SAR) values of rat brains during microwave exposure at mobile phone frequency bands. A finite difference time domain (FDTD) technique with perfect matching layer(PML) absorbing boundaries is used for this evaluation process. A color coded digital image of the Sprague Dawley(SD) rat based on magnetic resonance imaging(MRI) is used in FDTD calculation with appropriate permittivity values corresponding to different tissues for 3, 4, 7, and 10 week old rats. This study is comprised of three major parts. First, the rat model structure is scaled uniformly, i.e., the rat size is increased without change in permittivity. The simulated SAR values are compared with other experimental and numerical results. Second, the effect of permittivity on SAR values is examined by simulating the microwave exposure on rat brains with various permittivity values for a fixed rat size. Finally, the SAR distributions in depth, and the brain-averaged SAR and brain 1 voxel peak SAR values are computed during the microwave exposure on a rat model structure when both size and permittivity have varied corresponding to different ages ranging from 3 to 10 weeks. At 900 MHz, the simulation results show that the brain-averaged SAR values decreased by about 54 % for size variation from the 3 week to the 10 week-old rat model, while the SAR values decreased only by about 16 % for permittivity variation. It is found that the brain averaged SAR values decreased by about 63 % when the variations in size and permittivity are taken together. At 1,800 MHz, the brain-averaged SAR value is decreased by 200 % for size variation, 9.7 % for permittivity variation, and 207 % for both size and permittivity variations.