• Title/Summary/Keyword: Voxel model

Search Result 98, Processing Time 0.024 seconds

Application of the Detection of External Contamination on Radiation Workers for Bed Type Whole Body Counting Using Monte Carlo Method (몬테카를로 방법을 적용한 bed type 전신계측기의 방사선작업종사자 외부오염 검출 응용)

  • Kim, Jeong-In;Lee, Byoung-Il
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.242-245
    • /
    • 2013
  • Monte Carlo method was applied to discriminate the external contamination on radiation workers in nuclear power plants for internal dose assessment generally used with a bed type scanning detector whole body counter. Korean voxel model with internal contamination was used to estimate the detection patterns of whole body scanning. Also, the BOMAB model with various external contamination was assumed to compare with detection of radionuclides inside the human body. From the comparison of detection efficiency between front and back side up, external contamination was easily distinguished.

Development of a dose estimation code for BNCT with GPU accelerated Monte Carlo and collapsed cone Convolution method

  • Lee, Chang-Min;Lee Hee-Seock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1769-1780
    • /
    • 2022
  • A new method of dose calculation algorithm, called GPU-accelerated Monte Carlo and collapsed cone Convolution (GMCC) was developed to improve the calculation speed of BNCT treatment planning system. The GPU-accelerated Monte Carlo routine in GMCC is used to simulate the neutron transport over whole energy range and the Collapsed Cone Convolution method is to calculate the gamma dose. Other dose components due to alpha particles and protons, are calculated using the calculated neutron flux and reaction data. The mathematical principle and the algorithm architecture are introduced. The accuracy and performance of the GMCC were verified by comparing with the FLUKA results. A water phantom and a head CT voxel model were simulated. The neutron flux and the absorbed dose obtained by the GMCC were consistent well with the FLUKA results. In the case of head CT voxel model, the mean absolute percentage error for the neutron flux and the absorbed dose were 3.98% and 3.91%, respectively. The calculation speed of the absorbed dose by the GMCC was 56 times faster than the FLUKA code. It was verified that the GMCC could be a good candidate tool instead of the Monte Carlo method in the BNCT dose calculations.

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

ROI Study for Diffusion Tensor Image with Partial Volume Effect (부분용적효과를 고려한 확산텐서영상에 대한 관심영역 분석 연구)

  • Choi, Woohyuk;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • In this study, we proposed ameliorated method for region of interest (ROI) study to improve its accuracy using partial volume effect (PVE). PVE which arose in volumetric images when more than one tissue type occur in a voxel, could be used to reduce an amount of gray matter and cerebrospinal fluid within ROI of diffusion tensor image (DTI). In order to define ROIs, individual b0 image was spatially aligned to the JHU DTI-based atlas using linear and non-linear registration (http://cmrm.med.jhmi.edu/). Fractional anisotropy (FA) and mean diffusivity (MD) maps were estimated by fitting diffusion tensor model to each image voxel, and their mean values were computed within each ROI with PVE threshold. Participants of this study consisted of 20 healthy controls, 27 Alzheimer's disease and 27 normal-pressure hydrocephalus patients. The result showed that the mean FA and MD of each ROI were increased and decreased respectively, but standard deviation was significantly decreased when PVE was applied. In conclusion, the proposed method suggested that PVE was indispensable to improve an accuracy of DTI ROI study.

The Geometric Modeling for 3D Information of X-ray Inspection (스테레오 X-선 검색장치를 이용한 3차원 정보 가시화에 관한 연구)

  • Hwang, Young-Gwan;Lee, Seung-Min;Park, Jong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.145-149
    • /
    • 2014
  • In this study, using X-ray cargo container scanning device and to differentiate the concept of three-dimensional information extraction applied for X-ray scanning device as an ingredient in the rotation of the X-Ray Linear Pushbroom Stereo System by introducing the geometric How to model was introduced. Three-dimensional information obtained through the matching of a single voxel space filled with a random vector operations for each voxel in the three dimensional shape reconstruction algorithm using the definition, and in time, the time required for each step were analyzed. Using OpenCV in each step by applying parallelization techniques approximately 1.8 times improvement in the processing time of the check, but do not meet the target within one minute levels. The other hand, X-ray images by the primary process to convert the point View the results of real-time stereo through a three-dimensional could feel the comfort level.

VR Visualization of Casting Flow Simulation (주물 유동해석의 VR 가시화)

  • Park, Ji-Young;Suh, Ji-Hyun;Kim, Sung-Hee;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.813-816
    • /
    • 2008
  • In this research we present a method to reconstruct the casting flow simulation result as a 3D model and visualize it on a VR display. First, numerical analysis of heat flow is performed using an existing commercial CAE simulation software. In this process the shape of the original design model is approximated to a regular rectangular grid. The filling ratio and temperature of each voxel are recorded iteratively by predefined number of steps starting from pouring the melted metal into a mold until it is entirely filled. Next we reconstruct the casting by voxels using the simulation result as an input. The color of voxel is determined by mapping the colors to temperature and filling ratio at each step as the flow proceeds. The reconstructed model is visualized on the Projection Table which is one of horizontal-type VR display. It provides active stereoscopic images.

  • PDF

A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms (3D 프린팅 비압박 유방 팬텀 제작을 위한 복셀 기반 수치 모델에 관한 연구)

  • Youn, Hanbean;Baek, Cheol Ha;Jeon, Hosang;Kim, Jinsung;Nam, Jiho;Lee, Jayoung;Lee, Juhye;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Won, Jong Hun;Kim, Ho Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.116-122
    • /
    • 2017
  • Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.

The elastic and plastic behaviour of the micro-FE models for vertebral trabecular bones (척추 해면골에 대한 미세 유한요소모델의 탄성 및 소성특성에 관한 연구)

  • 우대곤;김한성;원예연;백명현;탁계래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1320-1323
    • /
    • 2003
  • In this study, the micro-FE analyses were carried out for the plastic behaviour of vertebral trabecular bones. Many researchers have investigated the elastic behaviour of trabecular bones by using the micro-finite element models based on the micro-CT images. However, there was no micro-FE model to account for the plastic behaviour of trabecular bones. Ulrich et at. reported that best results at coarser model were obtained when using 'compensated hexahedron models' with the same relative density. This study indicates that, for the elastic and plastic analysis, 'the compensated hexahedron FE model' is likely to be limited to about 63$\mu\textrm{m}$ image resolution in the vertebra trabecular bones.

  • PDF

The Voxelization of Surface Objects using File handling and Parallel Processing (파일 및 병렬 처리를 이용한 표면 객체의 복셀화 방안)

  • Lee, Su-Yeol;Ahn, Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.113-119
    • /
    • 2015
  • This paper suggests an efficient method for making the high resolution volexlized model from a polygonal surface object. A distinctive strength of the method is that a surface model, however complex one, can be transformed and formed an absolute voxelized solid model in a various resolution. It caused by producing a voxel by integrating the informations for the candidated voxels separately detected in each 3D-axial direction. This method reduces memory complexity by storing the information of voxels that is produced during the 2-phase volxelization(surface and inner voxelization) of a surface object in a binary file. For the computational efficiency, a parallel process using multi-threads is applied in the process of the inner voxelization, it also takes advantage of time complexity.

Specific Absorption Rate Values of Handsets in Cheek Position at 835 MHz as a Function of Scaled Specific Anthropomorphic Mannequin Models

  • Lee, Ae-Kyoung;Choi, Hyung-Do;Choi, Jae-Ick;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.227-230
    • /
    • 2005
  • A specific anthropomorphic mannequin (SAM) model was used to investigate the relation between local specific absorption rate (SAR) and head size. The model was scaled to 80 to 100% sized models at intervals of 5%. We assumed that the shell of the SAM model has the same properties as the head-equivalent tissue. Five handsets with a monopole antenna operating at 835 MHz were placed in the approximate cheek position against the scaled SAM models. The handsets had different antenna lengths, antenna positions, body sizes, and external materials. SAR distributions in the scaled SAM models were computed using the finite-difference time-domain method. We found that a larger head causes a distinct increase in the spatial peak 1-voxel SAR, while head size did not significantly change the peak 1-g averaged-SAR and 10-g averaged-SAR values for the same power level delivered to the antenna.

  • PDF