• Title/Summary/Keyword: Voting Method

Search Result 185, Processing Time 0.026 seconds

Comparing Accuracy of Imputation Methods for Incomplete Categorical Data

  • Shin, Hyung-Won;Sohn, So-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.237-242
    • /
    • 2003
  • Various kinds of estimation methods have been developed for imputation of categorical missing data. They include modal category method, logistic regression, and association rule. In this study, we propose two imputation methods (neural network fusion and voting fusion) that combine the results of individual imputation methods. A Monte-Carlo simulation is used to compare the performance of these methods. Five factors used to simulate the missing data are (1) true model for the data, (2) data size, (3) noise size (4) percentage of missing data, and (5) missing pattern. Overall, neural network fusion performed the best while voting fusion is better than the individual imputation methods, although it was inferior to the neural network fusion. Result of an additional real data analysis confirms the simulation result.

  • PDF

Systematic Approach for Detecting Text in Images Using Supervised Learning

  • Nguyen, Minh Hieu;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • Locating text data in images automatically has been a challenging task. In this approach, we build a three stage system for text detection purpose. This system utilizes tensor voting and Completed Local Binary Pattern (CLBP) to classify text and non-text regions. While tensor voting generates the text line information, which is very useful for localizing candidate text regions, the Nearest Neighbor classifier trained on discriminative features obtained by the CLBP-based operator is used to refine the results. The whole algorithm is implemented in MATLAB and applied to all images of ICDAR 2011 Robust Reading Competition data set. Experiments show the promising performance of this method.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

BtPDR: Bluetooth and PDR-Based Indoor Fusion Localization Using Smartphones

  • Yao, Yingbiao;Bao, Qiaojing;Han, Qi;Yao, Ruili;Xu, Xiaorong;Yan, Junrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3657-3682
    • /
    • 2018
  • This paper presents a Bluetooth and pedestrian dead reckoning (PDR)-based indoor fusion localization approach (BtPDR) using smartphones. A Bluetooth and PDR-based indoor fusion localization approach can localize the initial position of a smartphone with the received signal strength (RSS) of Bluetooth. While a smartphone is moving, BtPDR can track its position by fusing the localization results of PDR and Bluetooth RSS. In addition, BtPDR can adaptively modify the parameters of PDR. The contributions of BtPDR include: a Bluetooth RSS-based Probabilistic Voting (BRPV) localization mechanism, a probabilistic voting-based Bluetooth RSS and PDR fusion method, and a heuristic search approach for reducing the complexity of BRPV. The experiment results in a real scene show that the average positioning error is < 2m, which is considered adequate for indoor location-based service applications. Moreover, compared to the traditional PDR method, BtPDR improves the location accuracy by 42.6%, on average. Compared to state-of-the-art Wireless Local Area Network (WLAN) fingerprint + PDR-based fusion indoor localization approaches, BtPDR has better positioning accuracy and does not need the same offline workload as a fingerprint algorithm.

The study of Internet Electronic Voting of S. Korea with Spatial Information System analysed by the Application of Scenario Planning (공간정보시스템을 활용한 인터넷전자투표 연구: 시나리오플래닝을 중심으로)

  • Lee, Sang-Yun
    • Journal of Korea Technology Innovation Society
    • /
    • v.15 no.3
    • /
    • pp.604-626
    • /
    • 2012
  • As a society of knowledge and information has been developed rapidly, because of changing from web environment to ubiquitous environment, a lot of countries across the world as well as S. Korea for e-Government have come to use the internet electronic voting for a variety of elections. So this research focused on the strategy consulting of the internet electronic voting of S. Korea with spatial information system analysed by the application of 'scenario planning' as a foresight method. And as a consequence, the strategy formulation of the electronic voting for the future S. Korea is to use the biometrics technology system as vein recognition and face recognition, using a part of the human body like a password, with spatial information system.

  • PDF

Information extraction of the moving objects based on edge detection and optical flow (Edge 검출과 Optical flow 기반 이동물체의 정보 추출)

  • Chang, Min-Hyuk;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.822-828
    • /
    • 2002
  • Optical flow estimation based on multi constraint approaches is frequently used for recognition of moving objects. However, the use have been confined because of OF estimation time as well as error problem. This paper shows a new method form effectively extracting movement information using the multi-constraint base approaches with sobel edge detection. The moving objects anr extraced in the input image sequence using edge detection and segmentation. Edge detection and difference of the two input image sequence gives us the moving objects in the images. The process of thresholding removes the moving objects detected due to noise. After thresholding the real moving objects, we applied the Combinatorial Hough Transform (CHT) and voting accumulation to find the optimal constraint lines for optical flow estimation. The moving objects found in the two consecutive images by using edge detection and segmentation greatly reduces the time for comutation of CHT. The voting based CHT avoids the errors associated with least squares methods. Calculation of a large number of points along the constraint line is also avoided by using the transformed slope-intercept parameter domain. The simulation results show that the proposed method is very effective for extracting optical flow vectors and hence recognizing moving objects in the images.

A Feature Selection-based Ensemble Method for Arrhythmia Classification

  • Namsrai, Erdenetuya;Munkhdalai, Tsendsuren;Li, Meijing;Shin, Jung-Hoon;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach.

The Total Ranking Method from Multi-Categorized Voting Data Based on Analytic Hierarchy Process

  • Ogawa, Masaru;Ishii, Hiroaki
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.93-98
    • /
    • 2002
  • It is important to evaluate the performance of candidates mathematically from various aspects, and reflect it on decision making. In decision making, we judge the candidates through two steps, classification of objects and comparison of objects or candidates with plural elements. In the former step, Analytic Hierarchy Process (AHP) is useful method to evaluate candidates from plural viewpoints, and in the later step, Data Envelopment Analysis (DEA) is also useful method to evaluate candidates with plural categorized data. In fact, each candidate has plural elements, nevertheless it has been more important to evaluate from various aspects in IT society. So, we propose a new procedure complementing AHP with DEA.

Ensemble of Convolution Neural Networks for Driver Smartphone Usage Detection Using Multiple Cameras

  • Zhang, Ziyi;Kang, Bo-Yeong
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • Approximately 1.3 million people die from traffic accidents each year, and smartphone usage while driving is one of the main causes of such accidents. Therefore, detection of smartphone usage by drivers has become an important part of distracted driving detection. Previous studies have used single camera-based methods to collect the driver images. However, smartphone usage detection by employing a single camera can be unsuccessful if the driver occludes the phone. In this paper, we present a driver smartphone usage detection system that uses multiple cameras to collect driver images from different perspectives, and then processes these images with ensemble convolutional neural networks. The ensemble method comprises three individual convolutional neural networks with a simple voting system. Each network provides a distinct image perspective and the voting mechanism selects the final classification. Experimental results verified that the proposed method avoided the limitations observed in single camera-based methods, and achieved 98.96% accuracy on our dataset.