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Abstract:  
 

This paper presents a Bluetooth and pedestrian dead reckoning (PDR)-based indoor fusion 
localization approach (BtPDR) using smartphones. A Bluetooth and PDR-based indoor 
fusion localization approach can localize the initial position of a smartphone with the 
received signal strength (RSS) of Bluetooth. While a smartphone is moving, BtPDR can 
track its position by fusing the localization results of PDR and Bluetooth RSS. In addition, 
BtPDR can adaptively modify the parameters of PDR. The contributions of BtPDR include: 
a Bluetooth RSS-based Probabilistic Voting (BRPV) localization mechanism, a probabilistic 
voting-based Bluetooth RSS and PDR fusion method, and a heuristic search approach for 
reducing the complexity of BRPV. The experiment results in a real scene show that the 
average positioning error is < 2m, which is considered adequate for indoor location-based 
service applications. Moreover, compared to the traditional PDR method, BtPDR improves 
the location accuracy by 42.6%, on average. Compared to state-of-the-art Wireless Local 
Area Network (WLAN) fingerprint + PDR-based fusion indoor localization approaches, 
BtPDR has better positioning accuracy and does not need the same offline workload as a 
fingerprint algorithm.  
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1. Introduction 

With the rapid development of the Internet and the popularity of smartphones, people's 

demand for location-based services (LBS) is gradually increasing [1]. Location-based 
services are widely used in many fields including people's work, business and military [2-3]. 
The key to LBS is its ability to accurately obtain the real-time position of users. Although 
smartphones can easily obtain an outdoor position through the Global Positioning System 
(GPS), they cannot easily obtain an indoor position in a building due to the occlusion of 
walls. Because of this, high accuracy indoor localization has become a research topic of 
interest in recent years. 

Common methods of smartphone indoor localization are based on Received Signal 
Strength (RSS), for example, centroid localization [4-5], trilateration or multilateral 
localization [6-9] and fingerprint localization [10-13]. Centroid localization outputs the 
centroid of beacon nodes as a positioning result. This method is simplistic with poor 
positioning accuracy [4-5]. Trilateration or multilateral localization requires knowing the 
distances from an unknown node to at least three beacon nodes and then utilizes the distance 
and the position of the beacon nodes to build localization equations. Finally, it uses the 
maximum likelihood method [6-7], the interior point method [8], linear programming [9] and 
other mathematical optimization methods to calculate the position of unknown nodes. The 
traditional fingerprint localization approach [10-13] involves offline and online phases. In 
the offline phase, the approach collects RSS fingerprints of different indoor locations to 
create a fingerprint database. In the online phase, RSS fingerprints are compared to the 
fingerprints in the database to estimate the position of unknown nodes. However, traditional 
fingerprint localization is limited due to the necessity of a lot of offline work and the 
challenge of fingerprint ambiguity. Zuwei et al. [20] proposed a peer-to-peer navigation 
system (ppNav), avoiding the requirements of pre-deployed location services and detailed 
floorplans. The drawback of offline training of the fingerprint-based approach has been 
addressed by recent crowdsourcing-based methods in [21, 22]. To reduce RSS fingerprint 
ambiguity, Kaishun et al. [23] proposed a novel approach called FILA, which leverages 
channel state information (CSI) to build a propagation model and fingerprinting system at 
the receiver. 

The other method of smartphone indoor localization is based on pedestrian dead reckoning 
(PDR). The PDR-based method employs inertial measurement unit (IMU) sensors, such as 
the accelerometer, gyroscope or magnetometer embedded in a smartphone, to solve indoor 
localization [14, 19]. Since the PDR localization method can only provide relative position 
information, and the localization error caused by IMU sensors may accumulate with 
increased walking distance [30], this method needs another assistant localization method. 
Therefore, the fusion localization approach, which is based on PDR and another localization 
method, has attracted the attention of academics [15-18]. Lyu-Han et al. [16] employed the 
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maximum likelihood method to fuse fingerprint and PDR localization. Bonhyun et al. [17] 
employed Kalman filtering to also fuse fingerprint and PDR localization. Perttula et al. [18] 
used particle filter to fuse map-matching and PDR localization. However, collecting RSS 
fingerprints or indoor map information in [16-18] took a lot of time.  

In this paper, a Bluetooth RSS and PDR-based fusion localization approach (BtPDR) for 
smartphone indoor localization was proposed. Although the widespread deployment of 
WLAN has made WLAN-based fingerprint positioning (WFP) popular, this study argues 
that the localization approaches, which are based on Bluetooth Low Energy (BLE), are 
useful in specific scenarios such as factories, indoor garages and shopping malls. Bluetooth 
Low Energy has the advantages of low cost, low power consumption and low penetration [24, 
25]. Due to the low penetration feature of BLE, BLE beacons in different rooms or on 
different floors do not affect each other. Thus, BLE can achieve accurate, three-dimensional 
indoor localization. The Bluetooth RSS and PDR-based fusion localization approach uses 
Bluetooth RSS to localize the initial position of a smartphone, then employs the fusion 
results of Bluetooth RSS and PDR to track the trace of it. Moreover, BtPDR can adaptively 
modify the parameters of PDR. To summarize, the contributions of BtPDR include: 

 a Bluetooth RSS-based Probabilistic Voting (BRPV) localization method to reduce 
the negative impact of RSS instability on localization accuracy; 

 a BRPV and PDR fusion localization approach (BtPDR) to improve indoor 
localization accuracy; 

 a heuristic search method to reduce the computational complexity of BRPV.  
Experiment results in the real scene show that BtPDR can provide meter-level positioning 

accuracy for users with common smartphone devices, which is considered adequate for 
indoor LBS applications. Specifically, BtPDR's average positioning errors in three real 
experimental scenes were 1.86m, 1.94m and 1.58m. Compared to the traditional PDR, 
BtPDR improves the positioning accuracy by 42.6%, on average. In addition, compared to 
the state-of-the-art WLAN fingerprint + PDR-based fusion indoor localization algorithm, 
BtPDR has better positioning accuracy and does not need the same offline work. 

2. The traditional PDR localization  

The basic principle of PDR is shown in Fig. 1. First, PDR starts from a known location. 
Then, the heading and step length information of the walking pedestrian can be obtained by 
built-in sensors in a smartphone, for example, a magnetometer or an accelerometer. Using 
this information, the next position of the pedestrian is calculated as: 
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Where ( , )k kx y is the current location, 1 1( , )k kx y+ + is the next location, θk is the heading, 
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and Lk is the step length. 

 

Fig. 1. PDR algorithm schematic 
 

When pedestrians are moving, an acceleration waveform, collected by the built-in 
acceleration sensor, is created, as shown in Fig. 2. Each cycle waveform in Fig. 2 represents 
a forward step. After filtering the high frequency components and limiting amplitude, the 
acceleration waveform is shown in Fig. 3. By using the zero-crossing detection method in 
[14], the number of walking steps was counted. 

 

     
Fig. 2. Acceleration waveform during normal walking 

 

Fig. 3. Acceleration waveform after filtering 

To estimate step size, under the condition of an acceleration sensor fixed in shoes, a step 
size formula was proposed in [14] as follows: 

 
min

4
maxL K a a= ∗ −  (2) 
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Where K is a constant value, belonging to [0.2, 0.5], and is related to the gender, height and 
weight of the pedestrian and maxa and mina denote the maximum and minimum acceleration 
values in a step obtained by the acceleration sensor. However, BtPDR uses built-in sensors 
and assumes that the pedestrian holds a smartphone in their hand. Therefore, for this 
experiment, the step size formula should be different than in [14]. According to the 
experiment results, BtPDR employs a step size formula as follows:  

 
min

4
max* ( ) 2L K a a= − +  (3) 

The main drawbacks of traditional PDR are as follows: 1) it is unable to determine the 
initial location; 2) it uses acceleration changes to estimate step size and the estimation error 
varies with the individual and 3) it is relative localization and cannot eliminate cumulative 
errors, hence, its cumulative error grows with increased walking distance. 

3. The proposed BRPV localization 

To overcome the shortcomings of traditional PDR, a BRPV to assist PDR to realize 
high-precision indoor localization was proposed.  

3.1 The RSS ranging model   

Due to the weak penetrability of Bluetooth radio, a smartphone and Bluetooth beacon are 
usually in the same enclosed space to communicate with each other. Therefore, the signal 
propagation path loss between the smartphone and Bluetooth beacon can be modeled with a 
log-normal distribution as shown in (4). 

 , , 0 0( ) ( ) 10 log( / )r db r db pP d P d n d d X= − × × +  (4) 

Where d0 is the reference distance; d is the distance between the smartphone and Bluetooth 
beacon; Pr,dB(d) is the path loss at d0 distance to the Bluetooth beacon; np is the path loss 
constant, usually equaling 2~6 and X is a Gaussian random variable that obeys N(0, σ2). 
Then, according to (4), the distance d can be obtained as follows: 

 , 0 ,( ( ) ( )) 10
0 10 r dB r dB pP d P d nd d − ×= ×  (5) 

However, in the actual application, due to noise interference (e.g., multipath and shadow 
effect), Pr,dB(d) has large fluctuations, meaning that the estimated distance may be far from 
the real distance. Therefore, traditional RSS range-based multilateral localization may 
produce large localization errors at times.  

3.2 The proposed BRPV 

To tolerate RSS instability, BRPV does not directly use RSS to compute the distance 
between the smartphone and Bluetooth beacon; rather, it uses RSS to compute the 
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probability of a smartphone’s true location in different areas. Specifically, BRPV uses the 
Bluetooth beacon as a central point to obtain multiple concentric rings then calculates the 
probability that the real position of the smartphone falls into each concentric ring. When 
there are multiple Bluetooth beacons, the concentric rings of different Bluetooth beacons will 
intersect to create multiple areas. Then the optimal area will be selected by using the 
probabilistic voting method on each Bluetooth beacon. Finally, the centroid of the optimal 
area will be regarded as the location result. Advantages of BRPV are that it has outstanding 
tolerance to RSS instability and it can output localization results with a degree of reliability.  
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Area 4
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vote1
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votes6
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vote1
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D4 
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Fig. 4. RSS mapping distance 
 

The articles in [26-28] point out that an RSS at a fixed position generally obeys the 
Gaussian distribution of N(μ, σ2). To make a tradeoff between localization accuracy and RSS 
instability tolerance, BRPV defines four concentric rings, as shown in Fig. 4. The radiuses of 
these four rings are D1, D2, D3 and D4. These four rings divide the plane into five areas and 
the corresponding RSS ranges are (-∞, μ-1.5σ], (μ-1.5σ, μ-0.5σ], (μ-0.5σ, μ+0.5σ], (μ+0.5σ, 
μ+1.5σ] and (μ+1.5σ, +∞), where μ is the measured RSS and σ is a pre-determined standard 
deviation. That is to say, D1, D2, D3 and D4 are obtained by (5), with  Pr,dB(d) equaling 
μ+1.5σ, μ+0.5σ, μ-0.5σ and μ-1.5σ, respectively. 

After the smartphone receives the broadcast of the Bluetooth beacon, the probability of its 
real position in these five areas can be calculated by (6), where distrue is the true distance 
between the smartphone and the Bluetooth beacon. Then, the number of votes of each area 
can be decided according to corresponding probability of each area, as shown in Fig. 4. The 
probability of areas 5 and 1 is 0.067 and they are assigned one vote. The probability of areas 
4 and 2 is 0.242, about 3.6 times more than that of areas 5 and 1, hence, they are assigned 
four votes. The probability of area 3 is 0.383, about 5.73 times more than that of areas 5 and 
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1, so area 3 is assigned six votes. 
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The specific localization process of BRPV is as follows: 
Assume that the received RSS vector of the smartphone is 1 2( , ,... )N

k k kRSS rss rss rss=


, 
where i

krss  denotes the RSS of the i-th Bluetooth beacon in the k-th step. According to i
krss , 

the probability voting areas of the i-th Bluetooth beacon can be computed. An example of 
probability voting areas with three Bluetooth beacons is shown in Fig. 5. From Fig. 5 it can 
be seen that the probability voting areas of different Bluetooth beacons overlap each other, 
dividing the plane into more subareas. The number of votes for each subarea is equal to the 
sum of the number of votes polled by each Bluetooth beacon. The centroid of the subarea 
with the most votes is the final localization result. For example, if the shadowed subarea in 
Fig. 5 has the most votes, then the final localization result is its centroid.  

 
Fig. 5. Probability voting areas with three Bluetooth beacons 

3.3 A full search method for BRPV 

When there are many Bluetooth beacon nodes, the plane is divided into a lot of voting 
subareas, as shown in Fig. 5. In this case, it is very difficult to compute the boundary of each 
subarea and its centroid. Focusing on this problem, a simple, approximate calculation 
method, called a full search, was employed to derive the location with the most number of 
votes.  

In the full search, a grid lattice to represent a subarea was employed, as shown in Fig. 6. 
For each grid point, votes were computed according to (7). The grid point with the most 
number of votes was used as the localization results of BRPV. If there were multiple grid 
points with the same number of votes, their averaged value was used as the localization 
results of BRPV. While the full search method has high computation complexity if the grid 
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size is small, a smaller grid size can help to improve localization accuracy as the space is 
finely described. In this paper, a grid size of 0.1 m was chosen. 

 
1( , )

( , ) arg max ( , )m
rss rss iix y

x y V v x y
=

= ≡∑  (7) 

Where m is the number of Bluetooth beacons, ( , )iv x y is the number of votes polled by the 
i-th Bluetooth beacon for the position (x, y), V is the total number of votes polled by all 
Bluetooth beacons, and ( , )rss rssx y  is the localization results of the full search method. 

   
Fig. 6. The proposed full search scheme of BRPV 

3.4 A heuristic search method for BRPV 

Although the idea of the full search method is simple, and its localization accuracy is high, 
its complexity is also high, which limits its application with smartphones. Therefore, a 
heuristic search scheme for BRPV was proposed. The specific steps are as follows: 
Step 1: Determine the initial search location xerss(0)=xepdr=(xpdr, ypdr). BRPV employs xepdr, 
the localization results of PDR, as the initial search position. 
Step 2: Take N equal interval points from the circle whose center is xerss(0) and radius is 
search_step, which is shown in Fig. 7. The coordinates of these N search points are as 
follows: 

 
0 _ [cos ,sin ],

2( 1)* , 1,2, ,

k k k

k

xe xe seach step

k k N
N

θ θ
pθ

= + ×

= − = 

 (8) 

Step 3: Calculate the value of the objective function, defined in (9), at the above N+1 search 
points (including the circle center). 

 
1

( ) ( ) , 0,1, ,
m

k i k
i

f xe V xe k N
=

= =∑   (9) 

Step 4: Assume that there are M positions which have the same maximum value xerss_opt in 
the current search iteration. Then, BRPV updates xerss(0) and search_step according to (11) 
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and (12) for the next search iteration. 

 { }_ 0,1, ,
max ( )rss opt kk N

xe f xe
=

=


 (10) 

 _
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1(0)= ( )
M
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i
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M =
∑  (11) 

 _ * _seach step seach stepa=  (12) 

Step 5: Repeat steps 2~4 until search_step is less than stop_th. The localization results of 
BRPV are the last updated xerss(0). 

The initial point

The first search

The point with minimum objective function 
value

Search Points

The second search
The third search

search_ step

x

y

 
Fig. 7. The proposed heuristic search scheme of BRPV 

 
In the previous BRPV, α is the convergence factor, which is used to control the 

convergence speed and, in theory, belongs to (0, 1) and stop_th is the search stopping 
threshold. The localization accuracy and complexity of BRPV are mainly determined 
by α and stop_th. Generally, the smaller stop_th is and the larger α is, the higher the 
localization accuracy and complexity will be.  

In the simulation experiment, N = 16, search_step = 5, stop_th = 0.1, and α = 0.8, 
meaning that BRPV needed to search approximately 306 points in each localization 
calculation. However, if the full search method with 0.1m grid size described in Section 3.3 
had been employed, BRPV would have needed to search approximately 15,000 points in 
each localization calculation with a location area of 6m × 25m. The number of search points 
of the proposed heuristic search method is only 2.04% that of the full search method. 

4. The proposed BtPDR localization 

4.1 The specific flow of the BtPDR 

The traditional PDR can neither determine initial position nor eliminate cumulative error 
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and estimate the step size accurately, and the localization accuracy of the traditional RSS 
range-based localization is low when each step receives few RSS samples. To solve the 
presented problems, a Bluetooth RSS and PDR-based fusion localization approach (BtPDR) 
for smartphone indoor localization and tracking systems was proposed. First, the initial 
position of a smartphone is localized with the proposed BRPV algorithm. Second, while the 
smartphone is moving, it is tracked with the traditional PDR and BRPV at the same time. 
Last, the proposed BtPDR can intelligently fuse PDR and BRPV localization results, 
adaptively modifying the parameters of PDR. The overall system architecture of BtPDR is 
shown in Fig. 8. 

 

 
Fig. 8. Overall system architecture of BtPDR 
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4.2 Fusion rules of BtPDR 

During the smartphone tracking process, after xepdr, the positioning results of PDR, and 
xerss, the positioning results of BRPV, are derived, the next key issue is how to fuse xepdr and 
xerss. As mentioned, xerss is easily affected by the fluctuations of RSS and the number of 
votes at xerss reflects the probability that the actual position being in a region; the greater the 
number of votes, the greater the probability of the real location being in the region. Therefore, 
to reduce the influence of the RSS fluctuation, BtPDR discards xerss with the number of 
votes less than or equal to a threshold β. Only when the number of votes Vrss of BRPV is 
greater than β, then xerss is believed to be reliable. When the results of PDR and BRPV need 
to be fused, the fusion is based on: 

 
max{ , }pdr rss

pdr rss rss pdr
rss pdr rss pdr

pdr

V Vxe xe V V
V V V Vxe

xe otherwise

β


⋅ + ⋅ > + += 



 (13) 

Where xe is the final fusion localization results and Vrss and Vpdr are the number of votes by 
probabilistic voting at xerss and xepdr, respectively. It can be seen in (13) that the weighted 
value of xe is the number of votes of xepdr and xerss. The idea behind the weighted fusion 
method is to avoid the emergence of large errors by limiting the correction range of positions, 
making the fusion results more reliable. Moreover, the initial position localized by BRPV 
only affects the accuracy at the beginning. After BtPDR fuses the localization results of PDR 
and BRPV several times, the localization accuracy will converge and be independent of the 
initial position. 

4.3 The parameter update of BtPDR 

After BtPDR fuses the localization results of PDR and BRPV, it needs to adaptively 
update the step size of PDR. In this study, it was assumed that (xk, yk) are the coordinates of 
the k-th fusion results and (xpdr, ypdr) are the coordinates of the current PDR. Then the step 
size correction ratio rate can be computed: 

 
2 2

1 1

2 2
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When the rate is greater than 0.6 and less than 1.5, it is an effective correction. Next, BtPDR 
updates the K in (3) as follows: 

 

*
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5. Experimental results 

5.1 The relationship between RSS and distance 

This experiment was used to derive the relationship between RSS and distance in an actual 
scene. The experimental environment was an indoor rectangular corridor with a few 
obstacles.  

 

Fig. 9. The relationship between real RSS and distance  
 

Bluetooth RSS data was collected by the smartphone at different distance from the 
Bluetooth beacon. At each location, 100 RSS acquisitions were carried out. Then, a Gaussian 
filter [29] was utilized to reduce the influence of small probability and big disturbance events 
on the overall measurement. The relationship between real RSS and distance by experiment 
is as shown in Fig. 9. The blue triangle in Fig. 9 is the average value of RSS after using a 
Gaussian filter and the red curve is the curve of (16). 

Letting d0 = 1, through the experiment the following values were determined: Pr,dB(d0) = 
-55dBm, np = 2.12. The relationship between RSS and distance is then: 

 55 10 2.12 log( )RSS d X= − − × × +  (16) 

In the experiment, it was found that X obeys a Gaussian distribution of N(0, σ2) and σ varies 
with the received position of the smartphone. In the following experiment, for simplicity, σ = 
7 was set and (16) was used to model all cases. It must be noted that 1) if only one 
measurement at one distance is made, the relationship between RSS and distance will not be 
as ideal as Fig. 9 and the error of the model in (16) will become bigger and 2) in the whole 
geographical space, the real relationship between RSS and distance does not comply with 
(16). Fortunately, experiment results show that the proposed BRPV and BtPDR can tolerate 
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the suggested model errors, yielding satisfactory localization results. 

5.2 The performance analysis of BRPV  

To prove the localization accuracy of BRPV, simulations were carried out using MATLAB 
software. The simulation parameters are as follows: the number of total nodes is 104, 
including 4 Bluetooth beacons and 100 unknown nodes; the positions of the beacons are 
fixed and their coordinates are (6, 6), (0, 12) (6, 18), and (0, 24); the unknown nodes are 
uniformly distributed, in a fixed position, in a 6m × 25m rectangular region and each 
unknown node acquires 10 RSS for each beacon node. The experimental results are the 
averaged results of 1000 experiments. 

5.2.1 The area division of BRPV 

This section analyzes the impact of the number of areas of BRPV. The plane is divided 
into three, five, seven, and nine areas, and the number of votes is assigned according to the 
probability that the smartphone falls into these areas. Simulation results as shown in Table 1, 
where BRPV uses the full search method in section 3.3. From Table 1, it can be determined 
that having three or nine areas is inappropriate. Compared to five areas, seven areas can 
improve localization accuracy by 1.76% at the cost of increasing CPU time by 26.4%. 
Therefore, considering the localization accuracy and complexity, BRPV employed five areas 
in the following experiments. 

 
Table 1. The impact of area division on algorithm performance 

The number of areas CPU time per node (ms) Absolute localization error (m) 
3 50.1 6.732 
5 70.3 1.534 
7 88.9 1.507 
9 105.6 1.528 

 

5.2.2 Compared BRPV to other algorithms  

In this section, BRPV is compared with the traditional least squares based multilateral 
positioning (LSMP) and fingerprint positioning (FP) methods. To do so, a fingerprint 
reference point was deployed every two meters, creating 52 reference points. For each 
reference point, 50 fingerprint acquisitions were carried out and the averaged fingerprint was 
used as the characteristic fingerprint of the reference point. The comparison results under 
different noise standard deviations are shown in Fig. 10. 
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Fig. 10. Comparison of BRPV to LSMP and FP 

 
From Fig. 10 it can be determined that 1) BRPV and FP have similar tolerance to noise, 

which is superior to the LSMP and 2) the localization accuracy of BRPV is slightly better 
than that of the FP and much better than that of the LSMP.  

5.3 The performance analysis of the BtPDR 

In this section, the theoretical simulation and test experiments of BtPDR in the real scene 
are described. The comparison algorithms include the basic PDR in [14], the proposed BRPV, 
the LSMP in [6], and the Kalman filter-based fingerprint positioning (KFFP) algorithm in 
[12].  

5.3.1 Theoretical simulation 

The theoretical simulation parameters in this paper are as follows: 1) four Bluetooth 
beacons in a localization scene were deployed and their coordinates were (6, 6), (0, 12), (6, 
18) and (0, 24); 2) the actual walking route was a 4.8m × 22.2m rectangle and 3) considering 
that the number of received RSS samples in each real step was very low, in the simulation, 
each step only received one RSS sample. Moreover, the walking model of PDR is: 

 0 1

0 2

L L A X
B X

σ

σθ θ
= + +
= + +

 (17) 

Where L0 and θ0 is the real length and heading of each step and A and B are constants used to 
simulate the fixed error caused by sensor accuracy limits, which were set to A = 0.1m, B = 3° 
in simulation. Xσ1 and Xσ2 are zero mean Gaussian noises; σ1 is the standard deviation of the 
step length, which was set to σ1 = 0.1 and σ2 is the standard deviation of heading, which was 
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set to σ2 = 3.87. 
Since the simulation scene only had four Bluetooth beacons, according to Fig. 4 we can 

see that the range of votes in each region should be [4, 24]. Therefore, to ensure that the 
fusion results of BRPV and PDR are reliable, β = 18 was set in the simulation. The fusion 
condition is that the number of votes of BRPV is larger than 18; otherwise, the localization 
results of BRPV are discarded and the localization results of PDR used as the final 
localization results. 

Under the conditions of the theoretical experiment, the comparison results of different 
localization algorithms with different RSS noise errors are shown in Table 2 and Table 3. 

 
Table 2. Comparison of algorithm performance ( 2 20σ = ) 

Algorithm 
 

positioning 
error/m 

90% 
positioning 

error/m 

accuracy 
within 1m 

/% 

accuracy 
within 2m 

/% 

accuracy 
within 3m 

/% 

accuracy 
within 5m 

/% 
PDR  3.17 4.79 21 38 56 94 

BRPV 2.06 4.97 26 68 79 90 
LSMP 4.96 9.76 16 32 40 61 
KFFP 1.87 3.78 34 62 73 95 

BtPDR 1.13 2.62 50 85 97 100 
 

Table 3. Comparison of algorithm performance ( 2 50σ = ) 

Algorithm positioning 
error/m 

90% 
positioning 

error/m 

accuracy 
within 1m 

/% 

accuracy 
within 2m 

/% 

accuracy 
within 3m 

/% 

accuracy 
within 5m 

/% 
PDR 3.28 5.29 18 33 51 84 

BRPV 3.21 6.81 16 36 58 76 
LSMP 8.56 15.65 8 16 26 54 
KFFP 2.55 5.65 22 40 61 84 

BtPDR 1.66 2.72 35 66 97 100 

Table 2 and Table 3 show that BtPDR’s positioning accuracy is the best because it has the 
smallest positioning error in these algorithms. Compared with PDR, BRPV, LSMP and KFFP, 
BtPDR has improved positioning accuracy by 64.3%, 45.1%, 77.2% and 39.6%, respectively, 
in the case of a noise variance of 20, and has improved positioning accuracy by 49.4%, 
48.3%, 80.6% and 34.9%, respectively, in the case of a noise variance of 50. With the 
increased noise variance of Bluetooth RSS, 1) the positioning accuracy of BRPV, LSMP and 
KFFP clearly became worse because they are related to Bluetooth RSS; 2) the positioning 
accuracy of PDR became small because PDR is unrelated to Bluetooth RSS and 3) the 
positioning error of BtPDR became large due to the increase of the positioning error of the 
BPRV. Note that the reason for the positioning error of BRPV and LSMP in Table 2 and 
Table 3 being significantly larger than the results in Table 1 is that each set step only 
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received one RSS sample in the simulation, causing the RSS to have stronger fluctuation, 
thus increasing the positioning error. By contrast, each step in Table 1 received ten RSS 
samples and an average of RSS samples could be calculated to resist the RSS fluctuation.  

5.3.2 Actual location experiments 

Experiments were conducted in three actual scenarios including a separate indoor corridor, 
a separate office and a indoor corridor + office. A separate indoor corridor was used to test 
the performance of the localization algorithm in an ideal environment with few obstacles. A 
separate office was used to test the performance of the localization algorithm in a complex 
environment with lots of obstacles. A corridor + office environment was used to test the 
performance of the localization algorithm in a general environment. 

The experimental field was a 42.2m × 21m indoor environment as shown in Fig. 11. There 
were 12 Bluetooth beacons in the experiment field. The red stars in Fig. 11 represent the 
location of the Bluetooth beacons. The BRPV only used the 4 largest Bluetooth beacon RSS 
to locate the smartphone, hence, the range of the number of votes for each voting area in 
BRPV was [4, 24]. To enhance the reliability of BtPDR, β = 20 was set in the actual scene. 
The Bluetooth beacons used a CC2541 Bluetooth 4.0 module, produced by Texas 
Instruments, with a radio transmission power of 0dBm and a launch rate of five times per 
second. The smartphone was a MX4 MeiZu, which has a built-in accelerometer, direction 
sensor, Bluetooth 4.0 chip and Android 4.4 OS. 

 
Fig. 11. Experimental field map 

 
To verify the robustness of BtPDR, three experimenters were invited to carry out the 

experiment. Each experimenter carried out four experiments for each experiment 
environment. Therefore, 36 experiments in total were carried out for three experimental 
environments. Since the sex, height, frequency and handheld mobile phone habits of each 
experimenter was different, the results can be used to test the robustness of BtPDR for 
different experimenters.  
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a)  indoor corridor + office 

 
Fig. 12. The CDF of the positioning error 

 
Experimental environment I was indoor corridor + office. The actual walking trajectory is 

represented by route 1 in Fig. 11. Route 1 had a distance of 82.7m and passed indoor 
corridors and offices. The average absolute positioning errors of PDR and BtPDR were 
4.23m and 1.86m, respectively, and the cumulative distribution function (CDF) of the 
positioning error is shown in Fig. 12. Therefore, in the indoor corridor + office environment, 
BtPDR improved the positioning accuracy by up to 56%, compared to PDR.  

Fig. 13 compares location route results. As shown in Fig. 13(a), since the traditional PDR 
cannot accurately estimate or adaptively adjust the step size, the difference between 
positioning trajectory and actual trajectory is large. However, BtPDR can adaptively fuse the 
localization results of PDR and BRPV, adjusting the parameters of PDR when the 
localization results of BRPV are credible. Therefore, the positioning trajectory of BtPDR in 
Fig. 13(b) is clearly closer to the actual trajectory than that of PDR.  

 

   
(a) The positioning trajectory of PDR        (b) The positioning trajectory of BtPDR 

Fig. 13. Comparison of location route 
 



3674               Yingbiao Yao et al.: BtPDR: Bluetooth and PDR-Based Indoor Fusion Localization Using Smartphones 

Fig. 14 compares cumulative error results. It can be seen that the cumulative error of PDR 
gradually increases with an increased number of steps and the error cannot be self-corrected. 
But BtPDR can correct the length of a forward step and the cumulative error will not 
increase with the increase of the number of steps. 

 
Fig. 14. Cumulative error distribution 

b) Separate office environment 
Experimental environment II consisted of only an office environment. The walking route 

is represented by route 2 in Fig. 11. Each experimenter walked along the green path two 
times for a total of 53.6m. The average absolute positioning errors of PDR and BtPDR were 
2.59m and 1.94m, respectively, and the positioning error CDF is shown in Fig. 15. Location 
route comparison results are shown in Fig. 16. It can be seen that, in the office environment, 
BtPDR improved the positioning accuracy by up to 25.1% compared to PDR. The 
positioning error of PDR in experiment environment II is clearly smaller than that of PDR in 
experiment environment I. The reasons for this are: 1) the walking route of experiment II 
was shorter than that of experiment I and PDR error increases as the walking path increases 
and 2) the walking route of experiment II was a complete circular route and the positioning 
error of PDR was offset due to the circular shape of route. 

 
Fig. 15. The cumulative distribution function of the positioning error 
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(a) positioning trajectory of PDR        (b) positioning trajectory of BtPDR 

Fig. 16. Comparison of location routes 
 

c) Separate corridor environment  
 

 
Fig. 17. The CDF of the positioning error in the corridor environment 

 
Experimental environment III consisted of only a corridor environment. The walking route 

is represented by route 3 in Fig. 11. Each experimenter walked along the blue path two times 
for a total of 69.6m. The average absolute positioning errors of PDR and BtPDR were 2.97m 
and 1.58m, respectively, and the positioning error CDF is shown in Fig. 17. Location route 
comparison results are shown in Fig. 18. It can be seen that, in the corridor environment, 
BtPDR improved the positioning accuracy by up to 46.8% compared to PDR. In addition, 
because the corridor environment is an ideal indoor environment with few obstacles, BRPV 
had more accurate localization results causing localization performance improvement of 
BtPDR. Therefore, BtPDR in the corridor environment has the best positioning accuracy. 
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(a) positioning trajectory of PDR        (b) positioning trajectory of BtPDR 
Fig. 18. Comparison of location routes in the corridor environment 

 

5.3.3 The Latency of BtPDR 

Latency is another key indicator of the positioning system in practice. An average person 
walks about 95~125 steps per minute, meaning their speed is about 480~630ms per step. 
Through the experiment, we found that BtPDR requires about 30ms of processing time for 
each step. Therefore, this study argues that, in practical application, the latency of BtPDR 
meets real-time positioning. 

 

5.4 Compared with other indoor fusion localization algorithms 

Because Bluetooth and PDR-based fusion localization methods are seldom seen in the 
literature and most fusion localization methods are based on WLAN and PDR, the indoor 
localization algorithms in [16-18] were chosen for comparison. These algorithms were 
chosen because their experimental environments are like this study’s experimental 
environment and they are relatively new fusion algorithms. The work in [16] and [17] are 
fusion localization algorithms based on PDR and WLAN fingerprints. The experiment 
settings in [16] included a HTC Hero with Android 1.5 OS mobile terminal; 24 WLAN 
beacons in the positioning region; a fingerprint reference point deployed every three meters 
creating 183 reference points; and for each reference point, 100 fingerprint acquisitions were 
carried out. In [16], the average positioning errors of three test paths were 2.76m, 2.57m and 
2.81m, which is worse than the results of BtPDR. The experiment settings in [17] included a 
Samsung Galaxy S2 with Android 2.2 OS mobile terminal; 10 WLAN beacons in the 
positioning region; a fingerprint reference point deployed every two meters creating 72 
reference points; and for each reference point, 500 fingerprint acquisitions were carried out. 
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In [17], the experimental results showed that 90% of the positioning error was less than 4m 
and the average positioning error was 1.9m. The average positioning error in [17] is like that 
of BtPDR, but a 90% node localization error is less than the results of BtPDR. The work in 
[18] used PDR and map information to realize fusion localization. The experiment settings in 
[18] included a sensor worn on the waist and map information needed to detect the 
correctness of trajectory. The average positioning error of the two experiments was 1.4m and 
1.7m, respectively. The reasons that the experimental results in [18] are superior to BtPDR 
are: compared to a sensor held in the hand, the sensor worn on the waist can reduce the 
volatility of the collected data and the experiment used extra map information and a complex 
particle filter to refine PDR results.  

In summary, compared to previous literature, the proposed BtPDR not only provides 
accurate indoor localization but also eliminates the work for acquisition of offline fingerprint 
or map information. Moreover, to validate the robustness of BtPDR, three testers were 
chosen to carry out the experiment in three different experimental scenarios. The work in 
[16-18] did not mention conducting a robustness experiment and the indoor environment was 
an ideal corridor environment. Therefore, this study suggests that the robustness of BtPDR is 
superior to that of the algorithms in [16-18]. 

6. Conclusion 

This study presented an easy to implement approach, BtPDR, for indoor localization and 
trajectory tracking that combines Bluetooth RSS with PDR. First, the initial position of a 
smartphone was localized with BRPV. Second, while the smartphone was moving, it was 
tracked with PDR and BRPV at the same time. Last, localization results of PDR and BRPV 
were fused and parameters of PDR were adaptively modified. Experiment results show that 
the positioning error of BtPDR is less than 2m, which is significantly better than that of PDR 
and BRPV. Moreover, experiment results also show that, compared to the WLAN fingerprint 
and PDR-based fusion indoor localization approaches, BtPDR has better positioning 
accuracy and does not need the offline workload of a fingerprint algorithm. Therefore, the 
proposed BtPDR is accurate, stable and practical. This study is not without limitations. Due 
to the limitation of experimental conditions, localization experiments were not carried out in 
a wide range of indoor areas; the RSS error due to the shadow effect of body occlusion was 
not considered and considering the recent data precision enhancement techniques of IMU 
sensors to further improve the localization accuracy of PDR would be beneficial. These 
shortcomings will be addressed in future work. 
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