• Title/Summary/Keyword: Vorticity Field

Search Result 153, Processing Time 0.024 seconds

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.863-878
    • /
    • 2009
  • Unsteady three-dimensional flowfield generated by transverse fuel injection into a supersonic mainstream is simulated with a DES turbulence model. Comparisons are made with experimental results in terms of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the large eddy structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly over-predict the eddy formation frequency. The large eddy structures are generated as the counter-rotating vortices are detached alternately in the upstream recirculation region.

A Fundamental Study of the Subsonic Spiral Jet (아음속 스파이럴 제트 유동에 관한 기초적 연구)

  • Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

A Study on the Flow Characteristics in Ejector by PIV and CFD (PIV와 CFD에 의한 Ejector내의 유동특성 연구)

  • Park, Ji-Man;Lee, Haeng-Nam;Park, Kil-Moon;Lee, Duk-Gu;Sul, Jae-Lim
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.723-728
    • /
    • 2003
  • The Ejector is used to get low pressure, and it has been applied to a lot of industry field like the heat engine, the fluid instrument power plant, the food industry, environment industry etc... because there are not any problem even it is mixed with a any kind of liquid, gas, and solid. The flow characteristics in ejector are investigated by PIV and CFD. The experiment using PIV measurement for mixing pipe's flow characteristics acquired velocity distribution, kinetic energy distribution, and whirlpool . (Condition : when mixing pipe's diameter ratio is 1:1.9, and the flux is $Q_{1}=1.136{\imath}/s$, $Q_{2}=1.706{\imath}/s$, $Q_{3}=2.276{\imath}/s$. Based on the PIV and the CFD results, the flow characteristics in ejector are discussed, and it shows the validity of this study.

  • PDF

Wake Characteristics of Vane-Type Vortex Generators in a Flat Plate Laminar Boundary Layer

  • Shim, HoJoon;Jo, Young-Hee;Chang, Kyoungsik;Kwon, Ki-Jung;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.325-338
    • /
    • 2015
  • Experimental and numerical investigations were conducted to identify the wake characteristics downstream of two vane-type vortex generators over laminar flat plate boundary layer. Experimental study was carried out by using the stereoscopic particle image velocimetry. To describe the flow field around the vortex generator in detail, numerical study was performed. We considered two different planform shapes of vortex generator: triangular and rectangular shape. The height of the generator was chosen to be about the boundary layer thickness at the position of its installation. Two different lengths of the generator were chosen: two and five times the height. Wake measurements were carried out at three angles of attack for each configuration. Wake characteristics for each case such as overall vortical structure, vorticity distribution, and location of vortex center with downstream distance were obtained from the PIV data. Wake characteristics, as expected, were found to vary strongly with the geometry and angle of attack so that no general tendency could be deduced. Causes of this irregular tendency were explained by using the results of the numerical simulation.

Effects of the partially movable control fin with end plate of underwater vehicle

  • Jung, Chul-Min;Paik, Bu-Geun;Park, Warn-Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-65
    • /
    • 2017
  • Underwater torpedo has control fin with very low aspect ratio due to launching from limited size of cylindrical torpedo tube. If the aspect ratio of control fin of underwater vehicle is very low three-dimensional flow around control fin largely reduces control forces. In this study, the end plate was applied to reduce the three-dimensional flow effects of partially movable control fin of underwater vehicle. Through numerical simulations the flow field around control fin was examined with and without end plate for different flap angles. The pressure, vorticity, lift and torque on the control fin were analyzed and compared to experiments. The comparison have shown a reasonable agreement between numerical and experimental results and the effect of end plate on a low aspect ratio control fin. When the end plate was attached to the movable control fin, the lift increased and the actuator shaft torque did not significantly change. As this means less consumption of the actuator shaft torque compared to the control fin that has the same control force, the inner actuator capacity can be reduced and energy consumption can be saved. Considering this, it is expected to be effectively applied to the control fin design of underwater vehicles such as torpedoes.

Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD

  • Elhanafi, Ahmed;Fleming, Alan;Macfarlane, Gregor;Leong, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-99
    • /
    • 2017
  • Offshore oscillating water columns (OWC) represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD) model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements). Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave-pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.

Experiments on Tension Characteristics of Perforated-type Floating Breakwaters (유공형 부방파제의 장력특성에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.514-514
    • /
    • 2017
  • Floating breakwaters were treated as solid bodies without any perforation in previous studies. In this study, however, a floating breakwater is perforated to allow the partial absorption of the energy produced by incident waves and an air chamber is placed in the upper part to control the breakwater draft. A series of laboratory experiments for a floating breakwater installed with a mooring system are carried out. In general, a mooring system can be classified by the number of mooring points, the shape of the mooring lines, and the degree of line tension. In this study, a four-point mooring is employed since it is relatively easier to analyze the measured results. Furthermore, both the tension-leg and the catenary mooring systems have been adopted to compare the performance of the system. In laboratory experiments, the hydraulic characteristics of a floating breakwater were obtained and analyzed in detail. Also, a hydraulic model test was carried out on variable changes by changing the mooring angle and thickness of perforated wall. A hydraulic model was designed to produce wave energy by generating a vortex with the existing reflection method. Analysis on wave changes was conducted and the flow field around the floating breakwater and draft area, which have elastic behavior, was collected using the PIV system. From the test results the strong vortex was identified in the draft area of the perforated both-sides-type floating breakwater. Also, the wave control performance of the floating breakwater was improved due to the vortex produced as the tension in the mooring line decreased.

  • PDF

FLUID SIMULATION METHODS FOR COMPUTER GRAPHICS SPECIAL EFFECTS (컴퓨터 그래픽스 특수효과를 위한 유체시뮬레이션 기법들)

  • Jung, Moon-Ryul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.1-1
    • /
    • 2009
  • In this presentation, I talk about various fluid simulation methods that have been developed for computer graphics special effects since 1996. They are all based on CFD but sacrifice physical reality for visual plausability and time. But as the speed of computer increases rapidly and the capability of GPU (graphics processing unit) improves, methods for more physical realism have been tried. In this talk, I will focus on four aspects of fluid simulation methods for computer graphics: (1) particle level-set methods, (2) particle-based simulation, (3) methods for exact satisfaction of incompressibility constraint, and (4) GPU-based simulation. (1) Particle level-set methods evolve the surface of fluid by means of the zero-level set and a band of massless marker particles on both sides of it. The evolution of the zero-level set captures the surface in an approximate manner and the evolution of marker particles captures the fine details of the surface, and the zero-level set is modified based on the particle positions in each step of evolution. (2) Recently the particle-based Lagrangian approach to fluid simulation gains some popularity, because it automatically respects mass conservation and the difficulty of tracking the surface geometry has been somewhat addressed. (3) Until recently fluid simulation algorithm was dominated by approximate fractional step methods. They split the Navier-Stoke equation into two, so that the first one solves the equation without considering the incompressibility constraint and the second finds the pressure which satisfies the constraint. In this approach, the first step introduces error inevitably, producing numerical diffusion in solution. But recently exact fractional step methods without error have been developed by fluid mechanics scholars), and another method was introduced which satisfies the incompressibility constraint by formulating fluid in terms of vorticity field rather than velocity field (by computer graphics scholars). (4) Finally, I want to mention GPU implementation of fluid simulation, which takes advantage of the fact that discrete fluid equations can be solved in parallel.

  • PDF

Construction of Gridded Wind-stress Products over the World Ocean by Tandem Scatterometer Mission

  • Kutsuwada Kunio;Kasahara Minoru;Morimoto Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.192-195
    • /
    • 2004
  • Products of gridded surface wind and windstress vectors over the world ocean have been constructed by satellite scatterometer data with highly temporal and spatial resolutions. Even if the ADEOS-II/SeaWinds has supplied surface wind data only for short duration in Apr. to Oct. 2003 to us, it permits us to construct a product with higher resolution together with the Qscat/SeaWinds. In addition to our basic product with its resolution of $1^{\circ}\times1^{\circ}$ in space and daily in time, we try to construct products with $1/2^{\circ}\times1/2^{\circ}$ and semi- and quarter-daily resolution. These products are validated by inter-comparison with in-situ data (TAO and NDBC buoys), and also compared with numerical weather prediction(NWP) ones (NCEP reanalysis). Result reveals that our product has higher reliability in the study area than the NCEP's. For the open ocean regions in the middle and high latitudes where there are no in-situ data, we find that there are clear differences between them. Especially in the southern westerly region of 400-600S, the' wind-stress magnitudes by the NCEP are significantly larger than the others, suggesting that they are overestimated. We also calculate wind-stress curl field that is an important factor for ocean dynamics and focus its spatial character in the northwestern Pacific around Japan. Positive curl areas are found to cover from southwest to northeast in our focus region and almost correspond to the Kuroshio path. It is suggested that the vorticity field in the lower atmosphere is related to the upper oceanic one, and thus an aspect of air-sea interaction process.

  • PDF