• Title/Summary/Keyword: Vortex turbine

Search Result 197, Processing Time 0.024 seconds

Experimental Study on the Heat Transfer under the Effects of Wake In a Turbine Cascade (후류의 영향을 고려한 터빈 캐스케이드내 열전달 현상에 대한 실험적 연구)

  • Min, H.K.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.36-41
    • /
    • 2001
  • In order to simulate wake of stator and a gas turbine engine's balde row, acryl cylinder and a linear turbine cascade were used respectively in this study. Experimental of heat transfer distributions was done on the passage endwall and blade suction surface. Temperature distributions on the experimental regions were obtained through image processing system by using the cholesteric type liquid crystal which has chain structure of metyl$(CH_3)$. To represent the degree of heat transfer, dimensionless St number was used. The results show that heat transfer on the blade suction surface was increased due to the wake from the cylinder and was decreased as the distance between cylinder row and blade row increases. Because of groth of passage vortex, heat transfer distributions on the trailing edge area showed triangular shape which was little changed with wake. On the other hand, heat transfer on the passage endwall was decreased due to the wake from cylinder. As the distance between cylinder row and blade row increases, heat transfer was more decreased.

  • PDF

Broadband Noise Analysis of Horizontal Axis Wind Turbines Including Low Frequency Noise (수평축 풍력발전기의 저주파소음을 포함한 광대역소음 해석에 관한 연구)

  • Him, Hyun-Jung;Kim, Ho-Geun;Lee, Soo-Gab
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 2007
  • This paper demonstrates a computational method in predicting aerodynamic noise generated from wind turbines. Low frequency noise due to displacement of fluid and leading fluctuation, according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Aerodynamic flow in the vicinity of the blade should be obtained first, while noise source modelling need them as numerical inputs. Vortex Lattice Method(VLM) is used to compute aerodynamic conditions near blade. In the use of program X-foil [M.Drela] boundary layer characteristics are calculated to obtain airfoil self noise. Wind turbine blades are divided into spanwise unit panels, and each panel is considered as an independent source. Retarded time is considered, not only in low frequency noise but also In turbulence ingestion noise and airfoil self noise prediction. Numerical modelling is validated with measurement from NREL [AOC15/50 Turbine) and ETSU [Markham's VS45] wind turbine noise measurements.

  • PDF

Measurements of Endwall Heat(Mass) Transfer Coefficient in a Linear Turbine Cascade Using Naphthalene Sublimation Technique (나프탈렌승화법을 이용한 터빈 익렬 끝벽에서의 열(물질)전달계수 측정)

  • Lee, Sang-U;Jeon, Sang-Bae;Park, Byeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.356-365
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade. Its profile is based on the mid-span of the first-stage rotor blade in a industrial gas turbine. By using the naphthalene sublimation technique, local heat (mass) transfer coefficients are measured for two different free-stream turbulence intensities of 1.3% and 4.7%. The results show that local heat (mass) transfer Stanton number is widely varied on the endwall, and its distribution depends strongly on the three-dimensional vortical flows such as horseshoe vortices, passage vortex, and corner vortices. From this experiment, severe heat loads are found on the endwall near the blade suction side as well as near the leading and trailing edges of the blade. In addition, the effect of the free-stream turbulence on the heat (mass) transfer is also discussed in detail.

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator (후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구)

  • Lee, Changhyeong;Oh, Yeongtaek;Bae, Jihwan;Lee, Deukho;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

A Study on the Film-cooling Characteristics of Gas Turbine Blade with Various Area Ratios and Ejection Angles of the Double Jet Holes (이중분사 홀의 면적비와 분사각 변화에 따른 가스터빈 막냉각 특성 연구)

  • Cho, Moon-Young;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2014
  • The kidney vortex is the important factor adversely influencing film cooling effectiveness. In general, double jet film-cooling hole is designed to overcome the kidney vortex by generating anti-kidney vortices. In this study, the film cooling characteristics and the effectiveness of the double jet film cooling hole were numerically investigated with various area ratios of the first($A_1$) and second($A_2$) cooling hole($A_1/A_2$=0.8, 1.0, 1.25) and lateral ejection angle(${\alpha}$ = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$) as the design parameters. The effects of lateral distance between the first and second row holes are investigated. Numerical study was performed by using ANSYS CFX with the shear stress transport(SST) turbulence model. The film cooling effectiveness and temperature distribution were graphically depicted with various flow and geometrical conditions.

Vortex induced vibration analysis of a cylinder mounted on a flexible rod

  • Zamanian, Mehdi;Garibaldi, Luigi
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.441-455
    • /
    • 2019
  • In this study, vortex induced vibrations of a cylinder mounted on a flexible rod are analyzed. This simple configuration represents the key element of new conception bladeless wind turbine (Whitlock 2015). In this study the structure oscillations equation coupled to the wake oscillation equation for this configuration are solved using analytical perturbation method, for the first time. An analytical expression that predicts the lock-in phenomena range of wind speed is derived. The discretized equations of motion are also solved using RKF45 numerical method. The equations of motion are discretized by Galerkin method. Free vibration mode shape of the structure taking into account the discontinuity of the cross section are used as comparison function. Numerical results are compared to the analytical results, and they show a satisfying agreement. The effect of system parameters on the oscillations of structure and wake as well as on the lock-in domain are presented. Moreover, it is shown that the values of wind speed triggering the start and the stop of the lock-in phenomenon, for increasing wind speed are different from those values obtained during the reverse process, i.e., when the wind speed decreases.

Numerical Analysis for Suppressing Unsteady Wake Flow on Wind Turbine Tower (풍력발전기 타워의 후류 불안정성 억제를 위한 수치연구)

  • Kim, Su-Yong;Jin, Do-Hyeon;Kim, Jong-Am
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.33-36
    • /
    • 2012
  • 풍력발전기 성능은 유동의 안정성과 풍속에 의해 결정되는데, 이때 유동 불안정성은 풍력발전기의 성능뿐만 아니라 구조적 문제를 함께 유발시킨다. 본 연구에서는 풍력발전기 타워 후류에서의 불안정성을 최소화시키기 위하여 타워 단면의 기초 형상설계 연구를 수행하였다. 기존의 풍력발전기 타워 형상에 부가 구조물을 설치함으로써 Karman vortex의 생성을 지연시키고 와류 간섭현상을 줄여 풍력발전기의 안정성을 증대시키고자 하였다. 이를 위해 다양한 타워 단면 형상에 대하여 양력계수 및 항력계수를 비교 분석하였다. 그 결과 반지름의 1/2 길이의 자유류 방향 tip과 splitter plate를 후방에 설치하는 것이 후류 불안정성을 억제하는데 가장 효율적인 것으로 나타났다.

  • PDF

Effect of Vortex and High Turbulence on Film Cooling for Gas Turbine Combustor and Blades (가스터빈 연소실 및 블레이드 막냉각에서 와류 및 높은 난류 강도의 유동 효과에 대한 연구)

  • Cho, Hyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.471-474
    • /
    • 1996
  • The effects of injection angles between $0^{\circ}$ and $9^{\circ}$, mainstream turbulent intensities between 0.36 percent and 9.3 percent and embedded longitudinal vortices on jets issuing from a single film cooling hole and from a row of inclined holes are investigated. The heat transfer coefficients around film cooling holes are affected greatly by the compound injection angles. The injected jets affected weakly by the freestream turbulence at low level. However, the heat transfer coefficients near the film cooling holes have higher values at a high turbulence intensity. The vortices generated from a delta winglet change the injected jet direction and the kidney-type vortex pattern.

  • PDF

Studies on the flow stabilization around the turbine suction with utilizing the surface water overflow at small-hydraulic power plant (표층수의 월류를 통한 소수력빌전소 수차터빈측의 유동안정화 연구)

  • Lee, Sungmyung;Kim, Cheolhan;Yoo, Gunjong;Kim, Wonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.165.2-165.2
    • /
    • 2011
  • Flow with suction to water turbine must be in stable state at small hydraulic power plant. But because of water level fluctuation and water gate effect according to irregular supply of cooling water, it would happen to produce bubble and vortex and finally lead to problems in power-plant system. With utilizing the concept design of double size gate, surface water overflowed the overhead of gate for stable flow at suction. We developed the overflow condition and analyzed the design factor with existed one such as water level(overflow amount) and overhead of water gate(overflow figure). Flow test and CFD simulation say that flow have stable state around suction and 20% of wave reduction effect at surface layer after surface water overflow.

  • PDF

A Study on Inflow Rate Variation for Shrouded Wind Turbine Rotors (쉬라우드가 장착된 풍력터빈 로터의 유입 유량 변동 특성 연구)

  • Ham, Hwi-Chan;Kim, Ho-Hyeon;Lee, Chae-Yeon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.563-568
    • /
    • 2015
  • 풍력터변의 성능을 높이기 위한 방법으로 최근 해외에서는 쉬라우드를 장착하여 유입 유량을 증진시키는 형상에 대한 새로운 아이디어가 제안되고 시범적으로 적용되고 있다. 본 연구에서는 쉬라우드가 장착된 수평축 풍력터빈에 대해서 EDISON CFD를 이용하여 쉬라우드 내부로 유입되는 질량 유량의 변동을 몇 가지 형상에 대해 수치적으로 비교 분석하였다. 유동장은 비압축성 난류유동으로 가정하였으며, 수치 해석 결과로부터 쉬라우드 주변의 순환의 세기를 형상 변동에 따라 도출하였다. 쉬라우드 형상으로는 캠버를 갖는 goe 417 에어포일을 두 개의 받음각(5도, 10도)에 대해서 수치해석을 수행하였으며, 브림을 갖는 디퓨저 형상(Wind-lens)에 대해서도 유입 유량 변동과 순환 세기에 대해 수치해석을 수행하고 결과를 상호 비교하였다. 본 연구를 통해 쉬라우드가 발생시키는 순환에 의한 유입 유량 증가 현상을 파악할 수 있었으며, 이로써 풍력터빈의 출력을 증대시킬 수 있음을 확인하였다.

  • PDF