• Title/Summary/Keyword: Vortex suppression

Search Result 35, Processing Time 0.029 seconds

Experimental Study on the Near Wake Behind a Circular Cylinder with Helical Surface Protrusions (나선형의 표면돌출물이 부착된 원주의 근접후류에 관한 실험적 연구)

  • Gwon, Gi-Jeong;Kim, Hyeong-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2601-2610
    • /
    • 1996
  • Surface protrusions have been attached on a cylinder surface to reduce the flow-induced structural vibration by controlling the wake flow. Wind tunnel tests on the near wake of a circular cylinder with surface protrusions were carried out to investigate the flow characteristics of the controlled wake. Three experimental models were used in this experiment; one plain cylinder of diameter D and two cylinders wrapped helically by three small wires of diameter d=0.075D with pitches of 5D and 10D, respectively. Free stream velocity was ranged to have Reynolds number from 5000 to 50,000. Streamwise and vertical velocity components of the wake were measured by a hot-wire anemometry. The spanwise velocity component measured by a one-component fiber optic LDV revealed that time-averaged wake field has a nearly two-dimensional structure. It was found that the surface protrusions elongate the vortex formation region, which decrease the vortex shedding frequency. The suppression of vortices caused by the surface protrusions increases the velocity deficit in the center of wake region.

Active Control of Flow-Induced Vibration Using Piezoelectric Actuators (압전 작동기를 이용한 유체 유기 진동의 능동 제어)

  • 한재홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

Study on Flow Around Circular Cylinder Advancing Beneath Free Surface (자유표면 밑을 전진하는 원주 주위의 유동에 관한 연구)

  • Yi, Hyuck-Joon;Shin, Hyun-Kyung;Yoon, Bum-Sang
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.16-21
    • /
    • 2013
  • The flow around a circular cylinder advancing beneath the free surface is numerically investigated using a VOF method. The simulations cover Froude numbers in the range of 0.2~0.6 and gap ratios (h/d) in the range of 0.1~2.0, where h is the distance from the free surface to a cylinder, and d is the diameter of a cylinder at Reynolds number 180. It is observed that the vortex suppression effect and surface deformation increase as the gap ratio decreases or the Froude number increases. The most important results of the present study are as follows. The proximity of the free surface causes an initial increase in the Strouhal number and drag coefficient, and the maximum Strouhal number and drag coefficient occur in the range of 0.5~0.7. However, this trend reverses as the gap ratio becomes small, and the lift coefficient increases downward as the gap ratio decreases.

Flow Induced Vibration and Suppression of Inclined Cylinder (유체유동에 의한 경사원주의 진동과 제진에 관한 연구)

  • 양보석;복정희일랑;암호탁삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1381-1390
    • /
    • 1992
  • This paper presents a dynamic characteristics of flow induced vibration of circular cylinder set with inclined angle against flow direction. The effect of the cylinder bounded by spiral fin and wire on the damping of flow induced vibration is investigated, i.e., inclined angle, spiral pitch angle and number of spiral thread are studied. As the results, the cylinder with spiral fin is most effective for the damping. Also the cylinder bounded by pitch angle 50.deg. and 2 spiral thread is most effective.

Internal Flow Characteristics in the Draft Tube of a Francis Turbine

  • Wei, Qingsheng;Zhu, Baoshan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.618-626
    • /
    • 2012
  • Suppression of abnormal flow phenomena in the Francis hydro turbine is very important to improve the turbine performance. Especially, as cavitation and cavitation surge makes serious problems when the turbine is operated in the range of partial flow rate, optimum method of suppressing the abnormal flow characteristics is required necessarily. Moreover, as swirl flow in the draft tube of the Francis turbine decreases pressure at the inlet of the draft tube, suppression of the swirl flow can be an useful method of suppressing the occurrence of cavitation. In order to clarifying the possibility of suppressing the swirl flow by J-Groove in the draft tube, a series of CFD analysis has been conducted in the range of partial load, designed condition and excessive flow rate of a Francis turbine. A kind of J-Groove is designed and applied to the draft tube of the Francis hydro turbine model. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Groove. In addition, a group of data about the velocity in the draft is presented to show the influence of J-Groove.

Suppression of Wake Transition and Occurrence of Lock-on Downstream of a Circular Cylinder in a Perturbed Flow in the A-mode Instability Regime (A-mode 불안정성 영역에서 교란유동장에 놓인 원형실린더 후류의 천이지연과 유동공진의 발생)

  • Kim, Soo-Hyeon;Bae, Joong-Hun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.702-710
    • /
    • 2007
  • Direct numerical simulation (DNS) is performed to investigate suppressed wake transition and occurrence of lock-on in the wake of a circular cylinder disturbed by sinusoidal perturbation at the Reynolds number of 220 (A-mode instability regime). The sinusoidal perturbation, of which the frequency is near twice the natural shedding frequency, is superimposed on the free stream velocity. It is shown that the wake transition behind the circular cylinder can be suppressed due to the perturbation of the free stream velocity. This change causes a jump in the Strouhal number from the value corresponding to A-mode instability regime to the value corresponding to retarded wake transition regime (extrapolated from laminar shedding regime) in the Strouhal-Reynolds number relationship. As a result, vortex shedding frequency is locked on the perturbation frequency depending not on the natural shedding frequency but on the modified shedding frequency.

Wind-induced vibrations and suppression measures of the Hong Kong-Zhuhai-Macao Bridge

  • Ma, Cunming;Li, Zhiguo;Meng, Fanchao;Liao, Haili;Wang, Junxin
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.179-191
    • /
    • 2021
  • A series of wind tunnel tests, including 1:50 sectional model tests, 1:50 free-standing bridge tower tests and 1:70 full-bridge aeroelastic model tests were carried out to systematically investigate the aerodynamic performance of the Hong Kong-Zhuhai-Macao Bridge (HZMB). The test result indicates that there are three wind-resistant safety issues the HZMB encounters, including unacceptable low flutter critical wind speed, vertical vortex-induced vibration (VIV) of the main girder and galloping of the bridge tower in across-wind direction. Wind-induced vibration of HZMB can be effectively suppressed by the application of aerodynamic and mechanical measures. Acceptable flutter critical wind speed is achieved by optimizing the main girder form (before: large cantilever steel box girder, after: streamlined steel box girder) and cable type (before: central cable, after: double cable); The installations of wind fairing, guide plates and increasing structural damping are proved to be useful in suppressing the VIV of the HZMB; The galloping can be effectively suppressed by optimizing the interior angle on the windward side of the bridge tower. The present works provide scientific basis and guidance for wind resistance design of the HZMB.

Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components

  • Kang, Dong-Hyuk;Arimoto, Yusuke;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Hah, Chunill;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.137-149
    • /
    • 2010
  • The purpose of the present research is to suppress cavitation instabilities by using a circumferential groove. The circumferential groove was designed based on CFD so that the tip leakage vortex is trapped by the groove and does not interact with the next blade. Experimental results show that the groove can suppress rotating cavitation, asymmetric cavitation and cavitation surge. However, weak instabilities with higher frequency could not be suppressed by the groove. From the analysis of pressure pattern similar to that for rotor-stator interaction, it was found that the higher frequency components are caused by the interaction of backflow vortices with the inducer blades.

FLOW PAST A RECTANGULAR CYLINDER (사각 실린더를 지나는 층류 유동특성)

  • Park, Doohyun;Yang, Kyung-Soo;Ahn, Hyungsu
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • This study performed numerical simulation to elucidate the characteristics of flow past a rectangular cylinder with various values of the aspect ratio(AR) of the cylinder. We calculated the flow field, force coefficients and Strouhal number of vortex shedding depending on the Reynolds number(Re) and the aspect ratio. The $AR{\approx}1$ is preferred for drag reduction, and 0.375$AR{\approx}0$ is recommended if suppression of the lift-coefficient fluctuation and the shedding frequency is desirable. Furthermore the criticality of the Hopf bifurcation is also reported for each AR.

Circular cylinder drag reduction using piezoelectric actuators

  • Orazi, Matteo;Lasagna, Davide;Iuso, Gaetano
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • An active flow control technique based on "smart-tabs" is proposed to delay flow separation on a circular cylinder. The actuators are retractable and orientable multilayer piezoelectric tabs which protrude perpendicularly from the model surface. They are mounted along the spanwise direction with constant spacing. The effectiveness of the control was tested in pre-critical and in post-critical regime by evaluating the effects of several control parameters of the tabs like frequency, amplitude, height, angular position and plate incidence with respect to the local flow. Measurements of the mean static pressure distribution around the cylinder were used to estimate the pressure drag coefficient. The maximum drag reduction achieved in the pre-critical regime was of the order of 30%, whereas in the post-critical regime was about 10%, 3% of which due to active forcing. Furthermore, pressure fluctuation measurements were performed and spectral analysis indicated an almost complete suppression of the vortex shedding in active forcing conditions.