• 제목/요약/키워드: Vortex nozzle

검색결과 106건 처리시간 0.027초

저압용 보텍스튜브의 노즐면적비에 따른 에너지 분리특성에 관한 실험적 연구 (An Experimental Study on the Energy Separation in the Ratio of Nozzle Area of a tow Pressure Vortex Tube)

  • 오동진;최정원
    • 에너지공학
    • /
    • 제13권1호
    • /
    • pp.34-39
    • /
    • 2004
  • 본 논문에서는 압축공기를 작동매체로 한 저압용 보텍스튜브에 대한 에너지 분리과정을 상세히 연구하였다 먼저 보텍스튜브에서 에너지 분리되어 나오는 온공기와 냉공기의 온도변화에 대하여 실험하였고, 보텍스튜브의 안쪽표면의 최대벽면온도 변화와 보텍스튜브 내의 온도분포를 통하여 보텍스튜브 내 유동장에서의 정체점의 위치에 대한 유용한 정보를 얻게 되었다. 이를 바탕으로 보텍스튜브의 노즐면적비와, 오리피스의 크기에 따른 에너지분리 과정 등을 실험을 통하여 알아보았다. 이러한 기하학적 형상의 변화실험을 통하여 저압용?대형 보텍스튜브의 에너지 분리과정이 고압형\ulcorner소형 보텍스튜브 보다 에너지 분리효과가 증대됨으로 인하여 최적의 노즐면적비와 오리피스지름비가 차이가 있음을 알 수 있었다.

고체로켓 내부에서의 Roll 발생 현상 3D LES (Large Eddy Simulation for the investigation of Roll Development Process in a Solid Rocket Motor)

  • 김종찬;홍지석;염효원;문희장;김진곤;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.253-257
    • /
    • 2011
  • 고체로켓에서 발생하는 vortex shedding 현상 중 인히비터로 인해 발생하는 연소실내 와류(vortex)의 특성을 조사하기 위해 Large Eddy Simulation을 수행하였다. 해석의 결과는 기존 연구자들의 결과와 잘 일치하며 정략적 및 정성적 분석을 수행하였다. 인히비터 후방에서 발생하는 vortex는 Flow-acoustic coupling 에 의해 주기적으로 반복되며 생성, 소멸이 이루어지는 것을 확인 할 수 있었으며, 발생 주기는 연소실내 mode 2의 주파수와 일치하는 것을 확인하였다. 3차원 해석결과 인히비터 후방에서 Roll 발생은 비균일한 노즐 유동을 발생시킨다.

  • PDF

단일 유로를 갖는 와류발생기의 에너지분리 특성 (Energy Separation Characteristics of Single Hole Vortex Generator)

  • 유갑종;장준영;최인수
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2001
  • When vortex tubes are applied to enhance the coefficient of performance of refrigeration system, the smaller one is preferable. However, the existing vortex generator with a nozzle hole diameter of 0.5mm was not suitable due to chocking of the nozzle hole. Therefore, experimental investigation was made to find an appropriate geometry of vortex generator, which could give a comparable effect of energy separation to commercial ones without chocking problem. The tested vortex generators were tangential and spiral types, which had single inducing channel with larger cross-sectional area than that of conventional multi-hole ones. The experimental result showed that the performance of the spiral type was better than that of the tangential one. As a small size of spiral one, the diameter of cold-end orifice is proposed to an half of tube diameter for the application to refrigeration system, while cold mass fraction ratio is 0.5∼0.6 for a desirable operation.

저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구 (Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit)

  • 임석연
    • Tribology and Lubricants
    • /
    • 제32권5호
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

휴반용 분무기의 Nozzle에 관한 연구(I) (A Study on the Wide Reach Nozzle of Sprayer(I))

  • 원장우
    • 한국농공학회지
    • /
    • 제15권2호
    • /
    • pp.2980-3001
    • /
    • 1973
  • Nozzle is a part of sprayer and is consists of several elements; swirl plate, vortexchamber, cap and body. The travelling distance of sprayed particles is important in the wide reach nozzle. The factors to influence the travelling distance of the sprayed particles may be the helical angle of swirl plate, the distance of vortex hamber, the slope and the size of cap hole. The study was conducted to examine the effects of these factors on the travelling distance. The results of this study are summarized as follows; 1) There was higher positive correlation(+0.96) between the maximum travelling distance for which amount of sprayed particles was 5cc/cm min. and centro-position of the travelling distance. 2) There was a higher positive correlation(+0.85) between total discharge of sprayed particles and the centro-position of the travelling distance. 3) Main effects and interaction effects of helical angle, pressure, vortex chamber distance and cap slope were significantly affected the travelling distance of sprayed particles. 4) Main effects of helical angle, pressure and cap slope were especially highly significant to influence the travelling disance. 5) Helical angle, pressure, vortex chamber distance and cap slope influenced spraying forward velocity of dise hole, among which cap slope and pressure of nozzle was the most important factors. 6) Effect of change of helical angle on the travelling distance of sprayed particles, was generally a quadratic, the least value of the distance being showed about $45^{\circ}$ and the largest at about $15^{\circ}\;and\;55^{\circ}$, the decreasing rate of the change between $15^{\circ};and\;25^{\circ}$ was very small. 7) Effect of change of pressure on the travelling distance sprayed particles was generally a linear, the increasing rate of the charge was about 1.68, which was the most effective compared to the change of the other factors. 8) Effect of change of vortex chamber distance on the spraying distance was also generally a linear, the increasing rate being about 0.16, which was the least effective. 9) Effect of change of cap slope on the travelling distance was also generally a linear, the increasing rate was about 0.61 and its effect was about medium.

  • PDF

미세버블 발생용 보텍스 노즐의 유체유동에 대한 연구 (A Study on the Fluid Flow of Vortex Nozzle for Generating Micro-bubble)

  • 유성훈;박상희;강우진;한승욱
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.637-644
    • /
    • 2022
  • In this study, the flow characteristics according to the shape of the vortex nozzle was studied by numerical analysis and the amount of microbubble generation was measured experimentally. The shape of the vortex nozzle is cylindrical, diffuser, and conical type. The axial fluid velocity in the induced tube gradually increased from the inlet to the outlet. In particular, the fluid velocity in the nozzle part increased rapidly. The velocity distribution of the fluid at the inlet of the induced tube showed that the flow rotates counterclockwise in the outer region and the inner center of the induced tube. At the outlet of the induced tube, the cylindrical and conical type showed rotational flow, and the diffuser type showed irregular turbulent flow. The dimensionless pressure ratio 𝜂 of the inner region of the induced tube was lower than that of the outer region. Also, 𝜂 near the outlet of the induced tube in cylindrical and conical type showed a similar tendency to the inlet area. At the outer region of inlet of induced tube, intense vorticity was observed on the wall and in lower region. At the inner region of inlet of induced tube, intense vorticity was observed on the inner wall of the induced tube and in the central region of the inlet of the induced tube. At the outlet of induced tube, in the case of the cylindrical and conical type, intense vorticity was observed near the inner wall, the diffuser type showed irregular strong vorticity inside the tube. The total number of bubbles measured was the most in the cylindrical type, and the microbubbles less than 50mm occurred the most in the conical type.

대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구 (An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube)

  • 황승식
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.

대형 고체로켓의 그레인간 인히비터에 의한 유동 교란 특성 LES (Large Eddy Simulation on Inhibitor Effect of a Large Solid Rocket Motor)

  • 홍지석;허준영;문희장;성홍계;이도형;김윤곤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.31-37
    • /
    • 2011
  • 대형 고체로켓에 존재하는 그레인간 인히비터로 인해 발생하는 유동과 압력의 교란 현상을 조사하기 위해 Large Eddy Simulation과 Proper Orthogonal Decomposition(POD) 기법을 적용하였다. 해석 결과는 실험 결과와 유사하며 정량적 및 정성적 분석을 수행하였다. 인히비터에서 발생하는 와류(vortex)는 노즐헤드와 충돌하여 발생하는 음향가진(acoustic source)에 영향을 받아 주기적으로 발생하는 것을 확인하였다. 또한 3차원 해석 결과 와류가 노즐헤드에 충돌하는 과정에서 유동이 불균형한 형상으로 분해되면서 노즐 출구 유동이 회전하여 롤 토크를 유발함을 확인 하였다.

  • PDF

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I))

  • 이창호;김영석;조형희
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

전산 유체 역학(CFD)을 이용한 원형 양식 사육 수조 내부 유동장 해석 (Analysis of land-based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation)

  • 권인영;김태호
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.395-406
    • /
    • 2020
  • The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.