• Title/Summary/Keyword: Vortex identification

Search Result 31, Processing Time 0.023 seconds

A Study on the Unsteady Flow Characteristics of a Delta Wing by 3-D Stereo PIV (3-D Stereo PIV에 의한 비정상 델타윙 유동특성에 대한 연구)

  • Kim, Beom-Seok;Lee, Hyun;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1672-1677
    • /
    • 2004
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modem air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras($1280pixel{\times}1024pixel$) were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

A study on the identification of underwater propeller singing phenomenon (수중 프로펠러 명음 현상의 규명에 관한 연구)

  • Kim, Taehyung;Lee, Hyoungsuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • This paper is a study on the generation mechanism of propeller singing based on the cavitation tunnel test, underwater impact test, finite element analysis and computational flow analysis for the model propeller. A wire screen mesh, a propeller and a rudder were installed to simulate ship stern flow, and occurrence and disappearance of propeller singing phenomenon were measured by hydrophone and accelerometer. The natural frequencies of propeller blades were predicted through finite element analysis and verified by contact and non-contact impact tests. The flow velocity and effective angle of attack for each section of the propeller blades were calculated using RANS (Reynolds Averaged Navier-Stokes) equation-based computational fluid analysis. Using the high resolution analysis based on detached eddy simulation, the vortex shedding frequency calculation was performed. The numerical predicted vortex shedding frequency was confirmed to be consistent with the singing frequency and blade natural frequency measured by the model test.

A Study on the Identification and Countermeasure of Singing Phenomenon in Ships (선박 명음(Singing) 현상의 규명과 대책에 관한 연구)

  • Joo, W.H.;Kim, D.H.;Bae, J.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.797-803
    • /
    • 2000
  • Recently, the singing phenomenon was encountered during the sea trials of high speed catamaran and 46,000 TDW product carrier and remedied after various treatments, which were based on the reduction of vortex shedding strength and the avoidance of resonance, respectively. And, the numerical approach for structure-acoustical problem like singing phenomenon was established using MSC/NASTRAN and SYSNOISE. In this paper, the effectiveness of numerical approach was verified through the control of singing noise. And the results according to the modification were also discussed. Finally, the future works were described to enhance the numerical approach pattern for singing phenomenon.

  • PDF

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Lee S. B.;Baek S.-J.;Sung H. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.51-56
    • /
    • 2005
  • A new feedback control system based on system identification is proposed and preliminarily tested on Van der Pol equation which has a similar characteristic to circular cylinder. The same principle is applicable to circular cylinder in a uniform flow for suppresing the vortex shedding. The feedback controller is designed to impose feedback signal at the phase which is located outside the range of lock-on. The lift coefficient (CL) is employed as a feedback signal and the control forcing is given by a rotational oscillation of the cylinder. By applying the feedback control system, the lift coefficient is reduced.

  • PDF

Identification of Noise Source from Main Steam Line in Power Plant (발전소 주증기 배관 소음 발생 원인 규명)

  • Sohn, M.S.;Lee, J.S.;Lee, S.K.;Lee, W.R.;Lee, S.K.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.23-28
    • /
    • 2003
  • In heavy nuclear power plant, high energy through main steam line is provided to turbine that generate the electric power. Since plant had generated power, high noise has been occurred. Noise make equipments and work environment worse. For finding out the location and the cause of making noise, noise was measured along main steam line at open/close test of Main Steam Isolation Valve (MSIV hereafter). As the result, it was identified that the vortex shedding in the cavity of MSIV is main noise source. The profile change of MSIV seat ring was proposed as the method of noise reduction. After filletting MSIV seat ring, the noise level reduced $10{\sim}20dB$ compared before the change of profile.

  • PDF

Flow-pattern identification around two rectangular cylinders with aspect ratio of 0.5 in tandem arrangement

  • Yang, Letian;Gu, Zhifu;Zhao, Xuejun;Zhang, Weimin
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.179-192
    • /
    • 2013
  • The flow around two rectangular cylinders with aspect ratio of 0.5 in a tandem arrangement, was investigated using pressure measurements (in a wind tunnel) and flow visualizations (in a water tunnel) in the range of P/h from 0.6 to 4.0. Four flow patterns were identified, and processes of shear layers wrapping around, the shear layer reattachment, vortices wrapping around and vortices impingement, were observed. Mean and rms pressure distributions, flow visualizations and Strouhal numbers were presented and discussed. The paper revealed that the variations of Strouhal numbers were associated with the shear layers or vortex interference around two cylinders.

Interaction of turbulences with non-breaking divergent waves in an open channel

  • Hwang, Ayoung;Seok, Woochan;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2021
  • This paper presents a direct numerical simulation of turbulent flows over a bump in an open channel to examine the turbulence characteristics near divergent waves emanating from the bump and to investigate the interaction of the turbulences with the divergent waves. To verify the reliability of the simulations, the mean velocity profile and root-mean-square of velocity fluctuations are compared with previous data. The anisotropic invariant maps show that the ratio of the streamwise to spanwise velocity fluctuations plays an important role in characterizing the anisotropic nature of the separated shear layer behind the bump in the vicinity of the free surface. The vortex identification discloses a large-scale streamwise vortical structure from the mean velocity field and a cluster of small coherent structures from the instantaneous velocity field, which are responsible for the anisotropic characteristics of the turbulence beneath the free surface.

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Development of 3-D Stereo PIV and Its Application to a Delta Wing

  • Kim, Beom-Seok;Lee, Hyun;Choi, Jang-Woon;Kadooka, Yoshimasa;Tago, Yoshio;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.658-663
    • /
    • 2003
  • A process of 3-D stereo particle image velocimetry(PIV)was developed for the measurement of an illuminated sliced section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transformation of the oblique-angled image to the right-angled image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criteria, and finally 3-D display as the post processing. An experimental system was also used for the application of the proposed method. Two high speed digital CCD cameras and an Argon-Ion Laser for the illumination were adopted to clarify the time-dependent characteristics of the leading edge extension(LEX) in a highly swept shape applied to a delta wing found in modern air-fighters.

  • PDF

Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계)

  • Seong, Hyeong-Jin;Kim, Jung-Nyeon;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.