• Title/Summary/Keyword: Vortex breakdown

Search Result 50, Processing Time 0.03 seconds

A Study about Flow Characteristics on Delta-wing by PIV (PIV에 의한 델타형 날개에서의 유동특성에 관한 연구)

  • Lee, Hyun;Kim, Beom-Seok;Sohn, Myoung-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2151-2156
    • /
    • 2003
  • The distinguishing features of flows at high angles of attacks are caused by the generation of free shear layers at sharp leading edges, by separation of the viscous layers from the surfaces of wings and bodies and by the flow in the wakes of the wings and bodies. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vortex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$) and six measuring sections(30%, 40%, 50%, 60%, 70%, 80%) of chord length. Distributions of time-averaged velocity vectors and vorticities over the delta wing model were compared along the chord length direction. Highly swept leading edge extension(LEX) applied to delta wings has greatly improved the subsonic maneuverability of contemporary fighters. High-speed CCD camera which made it possible to acquire serial images is able to get the detailed information about the flow characteristics occurred on the delta wing. Especially quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarity the significance of the LEX existence.

  • PDF

LES Investigation of Pressure Oscillation in Solid Rocket Motor by an Inhibitor (고체모터의 인히비터에 의한 압력 진동 특성 LES 연구)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2015
  • The pressure oscillation induced by inhibitor in a solid rocket motor has been investigated by 3D large eddy simulation(LES) and proper orthogonal decomposition(POD). The vortex generation and breakdown at inhibitor are periodically observed between the inhibitor and the nozzle by flow-acoustic coupling mechanism. The excitation of pressure oscillation occurs as the flow impinges on the submerged nozzle head which recirculate in the cavity in rear dome of the motor chamber. The vortex generation frequency is closely related with the shedding frequencies of the detached vorticities at the inhibiter, which fairly compared with the experimental data.

Vorticity Analysis Associated with Drafting Cylinders for Pneumatic Spinning

  • Bergada J.M.;Valencia E.;Coll Ll
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.146-157
    • /
    • 2006
  • Traditional spinning systems have reached profitability limits in developed countries due to high production costs and low system productivity. Pneumatic spinning is seen as a developing system, because productivity is much higher than conventional systems. This study evaluates one of the main problems to increase productivity in pneumatic spinning, where air mass-flow is dragged by the drafting cylinders. This flow interacts with the incoming fibres deviating them from their expected path. Via laser anemometry, airflow velocity distribution around drafting cylinders has been measured and it has been found that vorticity is created at the cylinder's inlet. Extensive CFD simulation on the air flow dragged by the cylinders has given a clear insight into the vortex created, producing valuable information on how cylinder design affects the vorticity created. Several drafting cylinder designs have been tested without giving any improvement in productivity. However, the use of a drafting cylinder with holes in it produced good results to the problem of air currents, strongly reducing them and therefore allowing a sharp increase in yarn quality, as well as an increase in productivity. An extensive study on vortex kinematics has been undertaken, bringing with it a better understanding of vortex creation, development and breakdown.

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

Turbulent Combustion Characteristics of a Swirl Injector in a Gas Turbine Annular Combustor Using LES and Level-set Flamelet (LES와 Level-set Flamelet 기법을 이용한 가스터빈 환형 연소기용 스월 분사기의 난류 연소 특성)

  • Kim, Lina;Hong, Ji-Seok;Jeong, Won Cheol;Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To investigate the flame dynamics in an annular combustor with single swirl injector, a 3D large-eddy simulation (LES) and a level-set flamelet turbulent combustion model have been implemented. The LM6000 developed by GEAE has been used as the combustor of concern and boundary conditions are based on experimental data. The strong central toroidal recirculation zone induced by the volume expansion of the combustion gas and the vortex breakdown continuously occurred through the procession of the vortex with decreasing strength, are observed.

Experimental study of boundary layer at the entrance of a cavity (공동 입구의 경계층에 관한 실험적 연구)

  • Jung Yong-Wun;Park Seung-O;Lee Duck-Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.775-778
    • /
    • 2002
  • In order to analyse the mechanism of a flow tone around a cavity, the correlations between the flow in the cavity and the boundary layer flow in front of the cavity are studied experimentally in this paper. The instability In the boundary layer forms the vortex at the front edge of the cavity and the flow tone is occurred by the vortex breakdown at the rear edge of the cavity Therefore, the boundary layer measurement is important in the cavity flow control. We measure the velocity of the boundary layer at the entrance of the cavity using hot-wire anemometry and the flow tone around the cavity by microphone. The boundary layer characteristic is changed by the various angle of the flap on the front edge of the cavity, while it is less influenced by the ratio of length and depth of the cavity.

  • PDF

Vortical Flows over a LEX-Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2273-2283
    • /
    • 2004
  • The vortical flows over sharp-edged delta wings with and without a leading edge extension have been investigated using a computational method. Three-dimensional compressible Reynolds-averaged Navier-Stokes equations are solved to provide an understanding of the effects of the angle of attack and the angle of yaw on the development and interaction of vortices and the aerodynamic characteristics of the delta wing at a freestream velocity of 20 m/s. The present computations provide qualitatively reasonable predictions of vortical flow characteristics, compared with past wind tunnel measurements. In the presence of a leading edge extension, a significant change in the suction pressure peak in the chordwise direction is much reduced at a given angle of attack. The leading edge extension can also stabilize the wing vortex on the windward side at angles of yaw, which dominates the vortical flows over yawed delta wings.

Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow (횡단류 제트 와류구조의 3차원 토폴로지)

  • Shin, Dae Sig;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.

Numerical Analysis of Stall Propagation in Linear Cascade (선형 익렬에서의 실속 전파에 관한 수치적 해석)

  • Seo, Young-Seok;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.416-421
    • /
    • 2000
  • The performance of gas turbine engines is affected by instabilities, like as rotating stall and/or surge. Rotating Stall is a transient intermediate stage between normal flow and complete flow breakdown leading to engine surge. Rotating Stall is associated with large amplitude nonaxisymmetric flow variations rotating around the compressor annulus. This paper presents the evolutions of stall propagation in a compressor cascade by numerical analysis. The flow phenomena due to stall cells and propagation speed are examined using 2 dimensional Navier - Stokes equations.

  • PDF

Visualization Study of High-Incidence Vortical Flow over the LEX/Delta Wing Configuration with Sideslip (옆미끄럼을 갖는 LEX/삼각 날개 형상에 대한 높은 받음각 와유동의 가시화 연구)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.109-117
    • /
    • 2002
  • An off-surface flow visualization experiments have been performed to investigate the flow field over a delta wing with the leading edge extension(LEX). The model is a flat wing with $65^{\circ}$ sweepback angle. The free stream velocity is 6.2 m/s, which corresponds to Reynolds number of $4.4\times10^5$ based on the wing root chord. The angle of attack and sideslip angle range from $16^{\circ}\sim28^{\circ}$ and $0^{\circ}\sim-15^{\circ}$, respectively. The visualization technique of using the micro water-droplet and the laser beam sheet enabled to observe the vortical flow structures, which can not be obtained by 5-hole probe measurements. With sideslip angle, the interaction and breakdown of the LEX and wing vortices was promoted in the windward side, whereas, it was suppressed in the leeward side.