• 제목/요약/키워드: Vortex Tube

검색결과 186건 처리시간 0.031초

저압용 vertex tube의 기하학적형상에 따른 에너지 분리특성에 관한 실험적 연구 (An Experimental Study on the Energy Separation in the Geometric Setup of a Low Pressure Vortex Tube)

  • 오동진;류정인
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.276-282
    • /
    • 2002
  • 본 논문에서는 압축공기를 작동매체로 한 저압용 vortex tube에 대한 에너지분리 과정을 상세히 연구하였다. 먼저 vortex tube에서 에너지 분리되어 나오는 온공기와 냉공기의 온도변화에 대하여 실험하였고, vortex tube의 안쪽표면의 최대벽면온도 변화와 vortex tube내의 온도분포를 통하여 vortex tube내 유동장에서의 정체점의 위치에 대한 유용한 정보를 얻게되었다. 이를 바탕으로 vortex tube의 최적 길이와 throttle의 형상, sleeve에 따른 에너지분리과정 등을 실험을 통하여 알아보았다. 또한 본 연구에서는 디젤기관의 배기에 적용하기 위한 외통을 사용하였다. 이때 vortex tube에서 나오는 은공기가 180$^{\circ}$돌아 나오면서 vortex tube의 바깥쪽 벽면을 가열하게 된다. 이러한 기하학적 형상을 통하여 에너지분리효과가 증대됨으로 인하여 디젤기관의 배기가스에 적용 시 고온유동의 온도를 높이고자함에 본 연구의 목적을 두고자한다.

기관적용 저압용 vortex tube의 에너지 분리특성에 관한 실험적 연구 (An Experimental Study on the Energy Separation in a Low Pressure Vortex Tube for Engine)

  • 오동진;임석연;윤면근;류정인
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.235-241
    • /
    • 2002
  • The process of energy separation in a low pressure vortex tube with air as a working medium is studied In detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in the vortex tube provides useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. In this study Outer tube is used for the application of Diesel engine exhaust. The hot gas flow is fumed 180° and passes the outside of the vortex tube a second time heating it. From this geometric setup of a vortex tube the effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

Experimental and Numerical Studies in a Vortex Tube

  • Sohn Chang-Hyun;Kim Chang-Soo;Jung Ui-Hyun;Lakshmana Gowda B.H.L
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.418-425
    • /
    • 2006
  • The present investigation deals with the study of the internal flow phenomena of the counterflow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1MPa to 0.3MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments.

공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향- (A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation -)

  • 방창훈;추홍록;유갑종
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

Vortex Tube의 냉출구 Orifice에 관한 실험적 연구 (An experimental study for cold end orifice of vortex tube)

  • 유갑종;최병철
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1061-1073
    • /
    • 1996
  • Vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. The phenomena of energy separation taking place in a vortex tube has been investigated experimentally. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner of special purpose. In this study, experimental study on vortex tube efficiency was performed with various cold end orifices and nozzles type. The experimental results indicate that there is an optimum diameter of cold end orifice and nozzle type for the best cooling performance. The variation of the maximum wall temperature along the vortex tube surface provides useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. The similarity relation for the prediction of the temperature of the cold exit air was obtained.

Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators

  • Yoo, Seong-Yeon;Park, Dong-Seong;Chung, Min-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.109-115
    • /
    • 2002
  • Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin -circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of finn-flat tube heat exchanger without vertex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger At the same time, pressure losses for four types of heat exchanger is measured and compared.

Local and Overall Heat Transfer Characteristics of Fin- Flat Tube Heat Exchanger with Vortex Generators

  • Yoo, Seong-Yeon;Chung, Min-Ho;Park, Dong-Seong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권3호
    • /
    • pp.150-157
    • /
    • 2003
  • Local and overall heat transfer characteristics of fin-flat tube heat exchangers with and without vortex generators were investigated. Local heat transfer coefficients were measured with the heat exchanger model using naphthalene sublimation technique. In case of a fin-flat tube heat exchanger without vortex generators, only the horseshoe vortices formed around tubes augment the heat transfer. On the other hand, longitudinal vortices created artificially by vortex generators additionally enhance heat transfer in case of a fin-flat tube heat exchanger with vortex generators. Overall heat transfer coefficients were measured with the prototypes of the fin-flat tube heat exchanger with and without vortex generators in a wind tunnel and results were compared with those of a fin-circular tube heat exchanger with wavy fin. Friction losses for heat exchangers were also measured and compared. The fin-flat tube heat exchanger with vortex generators is found to be more effective than the fin-circular tube heat exchanger with wavy fin.

볼텍스 튜브의 에너지 분리 현상에 관한 수치해석 연구 (Study of Energy Separation Mechanism in Vortex Tube by CFD)

  • 최원철;정명균
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.92-99
    • /
    • 2008
  • The "energy separation phenomenon" through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.

납작관형 핀-관 열교환기의 국소 및 총합 열전달 특성에 관한 실험적 연구 (An Experimental Study on the Local and Overall Heat Transfer Characteristics of a Fin-Flat Tube Heat Exchanger)

  • 유성연;정민호;박동성;이상섭
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.939-947
    • /
    • 2002
  • Local and overall heat transfer characteristics of fin-flat tube heat exchangers with and without vortex generators are investigated. Local heat transfer coefficients are measured with the heat exchanger model using naphthalene sublimation technique. In case of a fin-flat tube heat exchanger without vortex generators, only the horseshoe vortices formed around tubes augment the heat transfer. On the other hand, longitudinal vortices created artificially by vortex generators enhance heat transfer dramatically in case of a fin-flat tube heat exchanger with vortex generators. Overall heat transfer coefficients are measured with the prototype of the fin-flat tube heat exchanger with and without vortex generators in a wind tunnel and results are compared with those of a fin-circular tube heat exchanger with wavy fin. Friction losses for heat exchangers are also measured and compared. The fin-flat tube heat exchanger with vortex generators is found to be more effective than the fin-circular tube heat exchanger with wavy fin.

저압용 보텍스튜브의 노즐면적비에 따른 에너지 분리특성에 관한 실험적 연구 (An Experimental Study on the Energy Separation in the Ratio of Nozzle Area of a tow Pressure Vortex Tube)

  • 오동진;최정원
    • 에너지공학
    • /
    • 제13권1호
    • /
    • pp.34-39
    • /
    • 2004
  • 본 논문에서는 압축공기를 작동매체로 한 저압용 보텍스튜브에 대한 에너지 분리과정을 상세히 연구하였다 먼저 보텍스튜브에서 에너지 분리되어 나오는 온공기와 냉공기의 온도변화에 대하여 실험하였고, 보텍스튜브의 안쪽표면의 최대벽면온도 변화와 보텍스튜브 내의 온도분포를 통하여 보텍스튜브 내 유동장에서의 정체점의 위치에 대한 유용한 정보를 얻게 되었다. 이를 바탕으로 보텍스튜브의 노즐면적비와, 오리피스의 크기에 따른 에너지분리 과정 등을 실험을 통하여 알아보았다. 이러한 기하학적 형상의 변화실험을 통하여 저압용?대형 보텍스튜브의 에너지 분리과정이 고압형\ulcorner소형 보텍스튜브 보다 에너지 분리효과가 증대됨으로 인하여 최적의 노즐면적비와 오리피스지름비가 차이가 있음을 알 수 있었다.