• 제목/요약/키워드: Vortex Street

검색결과 58건 처리시간 0.027초

Direct Simulations of Aerodynamic Sounds by the Finite Difference and Finite Volume Lattice Boltzmann Methods

  • Tsutahara, Michihisa;Tamura, Akinori;Motizuki, Kazumasa;Kondo, Takamasa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.22-25
    • /
    • 2006
  • Direct simulations of aerodynamic sound, especially sound emitted by rapidly rotating elliptic cylinder by the finite difference lattice Boltzmann method (FDLBM). Effect of pile-fabrics for noise reduction is also studied by the finite volume LBM (FVLBM) using an unstructured grid. Second order time integration and third order upwind scheme are shown to be enough for these simulations. Sound sources are detected to be doublets for both cases. For the elliptic cylinder, the doublet is generated in the interaction between the vortex and the edge. For the circular cylinders, they are generated synchronizing with the Karman vortex street, and it is also shown that the pile-fabrics covering the surface of the cylinder reduces the strength of the source.

  • PDF

회전하는 원주후류의 2차원 난류구조 (Turbulent Wake Structure Behind a Spinning Circular Cylinder)

  • 부정숙;김경천;류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.39-49
    • /
    • 1992
  • The coherent wake structures behind a spinning cylinder placed in a uniform flow were experimentally investigated by means of phase averaging technique. With a fixed cylinder Reynolds number (Re=6,600), the conditionally sampled velocity vectors were obtained at a section of 3.0 and 10 diameters behind the cylinder for the range of spin parameter S(the ratio of the peripheral velocity to that of the uniform flow) 0 to 2. Spectral analysis and vorticity contours of the velocity data show that up to S=1.2, a Karman vortex street exists within the wake, however, the coherent structures become obscure and their vorticity strength decreases as S increase. Beyond S=1.2, a distinct vortex shedding frequency no longer exists, furthermore coherent structures disappear when S is over 1.6.

  • PDF

Numerical simulation of flow past a rotating and rotary oscillating circular cylinder on unstructured meshes

  • Bai, Wei
    • Coupled systems mechanics
    • /
    • 제2권2호
    • /
    • pp.191-214
    • /
    • 2013
  • The unsteady flow past a circular cylinder which starts rotating or rotary oscillating impulsively from rest in a viscous fluid is investigated for Reynolds numbers Re=200 and 1000, rectilinear speed ratios ${\alpha}$ between 0.5 and 5.0, and forced oscillating frequencies $f_s$ between 0.1 and 2.0. Numerical solutions of the Navier-Stokes equations are obtained by using a finite volume method on an unstructured colocated grid. The objective of the study is to examine the effect of the rotating and rotary oscillating circular cylinder on the flow patterns and dynamics loads. The numerical results reveal that the $K\acute{a}rm\acute{a}n$ vortex street vanishes entirely behind the rotating cylinder when the ratio ${\alpha}$ exceeds the critical value, and the vortex shedding behind the rotary oscillating cylinder undergoes mainly three modes named 'synchronization', 'competition' and 'natural shedding' with the increase of $f_s$. Based on the amplitude spectra analysis of the lift coefficients, the regions of the classification of flow structure modes are presented, which provide important references for the flow control in the ocean engineering.

횡유동장에 놓인 원형 실린더 군 주위의 유동장 해석 (An Analysis on Cross Flows around a Group of Circular Cylinders)

  • 심우건;김태한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.582-587
    • /
    • 2001
  • A numerical method using FLUENT code was employed to investigate fluid drag and lift forces on a cylinder in a group of circular cylinders, subjected to a uniform cross flow. The cylinders can be arranged in tandem or in a staggered arrangements relative to the free stream flow. A vortex street behind the cylinder pairs or jets between the cylinders forms according to the arrangements. Vibration on a cylinder can occurs due to vortex shedding, fluid-elastic stiffness and wake galloping. The flow is first investigated and then the forces acting on the cylinder are calculated. The lift and drag forces on an elastically mounted cylinder in the wake of an upstream fixed cylinder arise from the mean flow plus velocity and pressure gradients in the wake. The analytical results of two staggered cylinder were compared with the existing experimental ones for validation of the present method. The analytical results of the forces were in good agreement with the experimental ones. The present method can be used for the analysis of the fluid induced vibration where the group of circular cylinders are subjected to a cross flow.

  • PDF

축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용 (Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF

2차원 쐐기형 몰수체의 비정상 공동 와류에 대한 수치해석 (Numerical Analysis of Unsteady Cavitating Vortex around Two-dimensional Wedge-shaped Submerged Body)

  • 김지혜;정소원;안병권;박철수;김건도
    • 한국해양공학회지
    • /
    • 제32권1호
    • /
    • pp.36-42
    • /
    • 2018
  • Unlike a slender body, vortices are shed off alternately in the wake of a blunt body. In the case of liquid flows, when the pressure falls below the vapor pressure, cavitation occurs in the vortex core and affects the formation of the vortex street. This phenomenon is of major importance in many practical cases because the alternate shedding of vortices creates imbalanced forces on the body. Hence, it is very important to determine the shedding frequency of cavitating vortices. In this paper, the unsteady cavitating flow around a two-dimensional wedge-shaped submerged body was simulated using the commercial code STAR-CCM+. A numerical investigation of the structure of cavitating vortices was performed for a model with an apex angle of $20^{\circ}C$. The results were validated by comparing them with experimental measurements carried out at a cavitation tunnel of Chungnam National University (CNU-CT). It was found that the shedding frequency of the vortex increased by up to 18%, which was strongly affected by the development of cavitation.

큰에디모의 모형을 이용한 높은 레이놀즈 수에서의 사각 기둥 후면의 와열 분석: 풍향과 풍속, 기둥 너비의 영향 (Analysis on Vortex Streets Behind a Square Cylinder at High Reynolds Number Using a Large-Eddy Simulation Model: Effects of Wind Direction, Speed, and Cylinder Width)

  • 한범순;곽경환;백종진
    • 대기
    • /
    • 제27권4호
    • /
    • pp.445-453
    • /
    • 2017
  • This study investigates turbulent flow around a square cylinder mounted on a flat surface at high Reynolds number using a large-eddy simulation (LES) model, particularly focusing on vortex streets behind the square cylinder. Total 9 simulation cases with different inflow wind directions, inflow wind speeds, and cylinder widths in the x- and y-directions are considered to examine the effects of inflow wind direction, speed, and cylinder widths on turbulent flow and vortex streets. In the control case, the inflow wind parallel to the x-direction has a maximum speed of $5m\;s^{-1}$ and the width and height of the cylinder are 50 m and 200 m, respectively. In all cases, down-drafts in front of the cylinder and updrafts, wakes, and vortex streets behind the cylinder appear. Low-speed flow below the cylinder height and high-speed flow above it are mixed behind the cylinder, resulting in strong negative vertical turbulent momentum flux at the boundary. Accordingly, the magnitude of the vertical turbulent momentum flux is the largest near the cylinder top. In the case of an inflow wind direction of $45^{\circ}$, the height of the boundary is lower than in other cases. As the inflow wind speed increases, the magnitude of the peak in the vertical profile of mean turbulent momentum flux increases due to the increase in speed difference between the low-speed and high-speed flows. As the cylinder width in the y-direction increases, the height of the boundary increases due to the enhanced updrafts near the top of the cylinder. In addition, the magnitude of the peak of the mean turbulent momentum flux increases because the low-speed flow region expands. Spectral analysis shows that the non-dimensional vortex generation frequency in the control case is 0.2 and that the cylinder width in the y-direction and the inflow wind direction affect the non-dimensional vortex generation frequency. The non-dimensional vortex generation frequency increases as the projected width of the cylinder normal to the inflow direction increases.

진동하는 원형주상체 주위의 유동에 관한 PIV를 이용한 실험적 연구 (Experimental Investigation of the flow around an Oscillating Circular Cylinder by Using a PIV System)

  • 송무석;이상대
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제6권1호
    • /
    • pp.60-67
    • /
    • 2003
  • 원형주상체가 진동하는 경우 Keulegen-Carpenter수를 10에서 30까지 변화시키며 이 때에 유기되는 유체력을 계측하고 전유동계측시스템을 (Particle Image Velocimetry) 개발하여 연관된 유동장을 분석하였다. 개발된 PIV 시스템은 고속 유동장 이미지를 홀수와 짝수의 주사선 이미지로 분리하는 방식을 시도하여 하나의 이미지로부터 속도추정이 가능하도록 하였다. KC수에 따른 실린더 주위의 유동을 "traverse street", "single pairing" 그리고 "double pairing"으로 관찰하였고 각 경우 박리되는 보오텍스의 형태에 따라 미세한 항력과 양력의 변화를 수반하는데 이들의 관계를 위상차와 보오텍스 박리의 형태 변화로 설명하였다.

  • PDF

Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence

  • Keerthana, M.;Harikrishna, P.
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.301-328
    • /
    • 2017
  • Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.

정현파 입구 속도 변동에 따른 열교환기 관군의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics of Heat Exchanger Tube Bank with the Sinusoidal Inlet Velocity)

  • 하지수
    • 한국가스학회지
    • /
    • 제25권1호
    • /
    • pp.14-19
    • /
    • 2021
  • 열교환기 관군에서 덕트 입구의 속도가 일정한 경우와 정현파로 변하는 경우에 대하여 시간에 따라 배관 주위에서 유동 특성과 열전달 특성 규명을 위해 와류 분포와 온도 분포 변화를 비교 분석하였다. 입구 속도가 정현파 변동이 있는 경우에 열교환기 관군에서 대표적인 원관에서 양력과 항력의 power spectral density를 도출하여 유동 변화에 따른 주파수 특성을 살펴보았다. 입구 유속이 일정한 경우는 열교환기 관군의 입구쪽 관군 부근에서 원관 주위 유동에서 관찰 할 수 있는 칼만 와류를 관찰할 수 있었다. 정현파 입구 속도 변동의 경우에서도 입구쪽 관군에서 칼만 와류가 형성되는 것을 관찰할 수 있었고 정현파 입구 속도 변동에 따른 유동 와류 변화를 관찰할 수 있었다. 온도 분포 변화는 일정한 입구 속도 변화의 경우와 정현파 입구 속도변화의 경우 모두 유동 와류 분포에서 관찰한 것과 유사하게 나타나는 것을 확인할 수 있었다. 유동 주파수는 일정한 입구 속도의 경우는 37.25 Hz이며 정현파 입구 속도의 경우는 정현파 주파수와 동일하게 18.63 Hz으로 나타났다. 열교환기 배관 전체의 평균 Nu수는 일정한 입구 속도의 경우에는 1051이며 정현파 입구 속도 변동의 경우는 1117로 나타나서 정현파로 입구 속도가 변하는 경우의 열전달이 6.3% 증가하는 것을 알 수 있었다.