• 제목/요약/키워드: Vortex Shedding

검색결과 528건 처리시간 0.021초

Experimental and Computational Investigation of Aerodynamic Characteristics of Hovering Coleoptera

  • Saputra, Saputra;Byun, Do-Young;Yoo, Yong-Hoon;Park, Hoon-Choel;Byun, Yong-Hwan
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.384-388
    • /
    • 2007
  • Aerodynamic characteristics of Coleoptera species of Epilachna quadricollis and Allomyrina dichotoma are experimentally and numerically investigated. Using digital high speed camera and smoke wire technique, we visualized the continuous wing kinematics and the flight motion of free-flying coleoptera. The experimental visualization shows that the elytra flapped concurrently with the main wing both in the downstroke and upstroke motions. The wing motion of Epilachna quadricollis was captured and analyzed frame by frame to identify the kinematics of the wings and to implement it in the movement of a model wing (thin plate) in the simulation. The two-dimensional simulation of Epilachna quadricollis hovering flight was performed by assuming the wing cross section shape as a thin plate, even though most of insect's wings are made of curved corrugated membrane. The effect of Reynolds number are investigated by the simulation. Meanwhile, in order to investigate the role and effect of elytra, the flow visualization of Allomyrina dichotoma was carried on using smoke wire visualization technique. Here, we confirmed that the vortex generated by elytra due to its movement is strongly influence the vortex dynamic generated by hind wings.

  • PDF

축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용 (Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF

유체-구조 연성해석을 통한 원주의 와유기 진동 해석 (FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER)

  • 김세훈;안형택;유정수;신현경;권오조;서희선
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.

고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성 (Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil)

  • 유재경;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

EDISON_전산열유체를 활용한 풍력발전기 타워의 후류 불안정성 억제에 관한 수치연구 (NUMERICAL ANALYSIS FOR SUPPRESSING UNSTEADY WAKE FLOW ON WIND TURBINE TOWER USING EDISON_CFD)

  • 김수용;진도현;이근배;김종암
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.36-42
    • /
    • 2013
  • The performance of the wind turbine is determined by wind speed and unsteady flow characteristics. Unsteady wake flow causes not only the decline in performance but also structural problems of the wind turbine. In this paper, conceptual designs for the wind turbine tower are conducted to minimize unsteady wake flow. Numerical simulations are performed to inspect the shape effect of the tower. Through the installation of additional structures at the rear of the tower, the creation of Karman vortex is delayed properly and vortex interactions are reduced extremely, which enhance the stability of the wind turbine. From the comparative analysis of lift and drag coefficients for each structure, it is concluded that two streamwise tips with a splitter plate have the most improved aerodynamic characteristics in stabilizing wake flow.

로터 간격에 따른 쿼드로터의 후류특성 변화 연구 (Quadrotor wake characteristics according to the change of the rotor separation distance)

  • 이승철;채석봉;김주하
    • 한국가시화정보학회지
    • /
    • 제17권3호
    • /
    • pp.46-51
    • /
    • 2019
  • Rotor wake interaction must be considered to understand the quadrotor flight, and the rotor separation distance is an important parameter that affects the rotor wake interaction. In this study, the wake characteristics were investigated with varying the rotor separation distance. The velocity field in the rotor wake was measured using digital PIV for hovering mode at Re = 34,000, and the wake boundaries from the inner and outer rotor tips were quantitatively compared with varying the rotor separation distance. The symmetric rotor-tip vortex shedding about the rotor axis was found at a large rotor separation distance. However, the wake boundary became more asymmetric about the rotor axis with decreasing the rotor separation distance. At the minimum rotor separation distance, in particular, a faster vortex decay was observed due to a strong vortex interaction between adjacent rotors.

Applied Koopmanistic interpretation of subcritical prism wake physics using the dynamic mode decomposition

  • Cruz Y. Li;Xisheng Lin;Gang Hu;Lei Zhou;Tim K.T. Tse;Yunfei Fu
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.191-209
    • /
    • 2023
  • This work investigates the subcritical free-shear prism wake at Re=22,000 by the Koopman analysis using the Dynamic Mode Decomposition (DMD) algorithm. The Koopman model linearized nonlinearities in the stochastic, homogeneous anisotropic turbulent wake, generating temporally orthogonal eigen tuples that carry meaningful, coherent structures. Phenomenological analysis of dominant modes revealed their physical interpretations: Mode 1 renders the mean-field dynamics, Modes 2 describes the roll-up of the Strouhal vortex, Mode 3 describes the Bloor-Gerrard vortex resulting from the Kelvin-Helmholtz instability inside shear layers, its superposition onto the Strouhal vortex, and the concurrent flow entrainment, Modes 6 and 10 describe the low-frequency shedding of turbulent separation bubbles (TSBs) and turbulence production, respectively, which contribute to the beating phenomenon in the lift time history and the flapping motion of shear layers, Modes 4, 5, 7, 8, and 9 are the relatively trivial harmonic excitations. This work demonstrates the Koopman analysis' ability to provide insights into free-shear flows. Its success in subcritical turbulence also serves as an excellent reference for applications in other nonlinear, stochastic systems.

폐쇄형 풍동 시험부내의 원형 실린더 유동에 대한 비정상 벽면효과 연구 (Unsteady Wall Interference Effect on Flows around a Circular Cylinder in Closed Test-Section Wind Tunnels)

  • 강승희;권오준;홍승규
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.1-8
    • /
    • 2005
  • 풍동 시험부 비정상 벽면효과에 대한 연구를 위해 폐쇄형 시험부내의 원형 실린더 주위 유동장에 대한 수치적 연구를 수행하였다. 수치기법은 Roe의 flux-difference-splitting을 사용한 격자점 중심 유한체적법과 이중시간 전진 기법을 사용하는 내재적 시간적분법을 사용하였다. 계산 결과 폐쇄형 시험부에는 실린더 주위 비정상 유동장에 압력구배를 강화시켜 실린더의 양력 및 항력의 진폭을 크게 하고, 실린더 뒷전에서의 기저압력을 작게 하여 항력을 증가시키는 벽면효과가 있음을 확인하였다. 또한, 이러한 시험부 벽면은 실린더 와류 shedding 주파수를 커지게 하는 효과가 있다. 시험부 벽면에서의 압력은 벽면효과가 포함된 shedding 주파수를 기본으로 하는 고조파 현상을 보인다.

A "deformable section" model for the dynamics of suspension bridges -Part II: Nonlinear analysis and large amplitude oscillations

  • Sepe, Vincenzo;Diaferio, Mariella;Augusti, Giuliano
    • Wind and Structures
    • /
    • 제6권6호
    • /
    • pp.451-470
    • /
    • 2003
  • The classical two-degree-of-freedom (2-d-o-f) "sectional model" is of common use to study the dynamics of suspension bridges. It takes into account the first pair of vertical and torsional modes of the bridge and describes well global oscillations caused by wind actions on the deck, yielding very useful information on the overall behaviour and the aerodynamic and aeroelastic response; however, it does not consider relative oscillations between main cables and deck. On the contrary, the 4-d-o-f model described in the two Parts of this paper includes longitudinal deformability of the hangers (assumed linear elastic in tension and unable to react in compression) and thus allows to take into account not only global oscillations, but also relative oscillations between main cables and deck. In particular, when the hangers go slack, large nonlinear oscillations are possible; if the hangers remain taut, the oscillations remain small and essentially linear: the latter behaviour has been the specific object of Part I (Sepe and Augusti 2001), while the present Part II investigates the nonlinear behaviour (coexisting large and/or small amplitude oscillations) under harmonic actions on the cables and/or on the deck, such as might be generated by vortex shedding. Because of the discontinuities and strong nonlinearity of the governing equations, the response has been investigated numerically. The results obtained for sample values of mechanical and forcing parameters seems to confirm that relative oscillations cannot a priori be excluded for very long span bridges under wind-induced loads, and they can stimulate a discussion on the actual possibility of such phenomena.

평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구 (Flow Around an Elliptic Cylinder Placed Near a Plane Boundary)

  • 김성민;이상준
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).