• 제목/요약/키워드: Vortex Interaction

검색결과 364건 처리시간 0.019초

동축제트의 와류주파수 및 혼합특성에 대한 수치해석 (NUMERICAL STUDY ON THE CHARACTERISTICS OF VORTEX FREQUENCY AND LAMINAR MIXING OF A PASSIVE SCALAR IN COAXIAL JET FLOWS)

  • 김원현;박태선
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.49-55
    • /
    • 2009
  • This study focuses on the near-field vortical structure and dynamics of coaxial jets. The characteristics of laminar flow and mixing in coaxial jets are investigated using a unsteady flow simulation. In order to analyze the geometric effects on the vortical structure, several cases of different configurations are selected for various values of the velocity ratio of inner jet to outer jet. From the result, it is confirmed that the flow mixing is promoted by the development of vortical structure and the interaction between inner jet and outer jet. This feature is strongly related to the vortex frequency in the shear-layers. The vortex frequency depends on the velocity ratio and the lip thickness of inner nozzle, but the outer pipe length has no effect on the frequency variation.

3차원 난류경계층 내에 존재하는 종방향 와동의 유동특성에 관한 수치적 연구 (A Numerical Simulation of Longitudinal Vortex in Turbulent Boundary Layers)

  • 양장식;이기백
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.802-813
    • /
    • 2000
  • This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data.

Vortex excitation model. Part II. application to real structures and validation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.477-490
    • /
    • 2013
  • This paper presents results of calculations performed according to our own semi-empirical mathematical model of critical vortex excitation. All calculations are carried out using own computer program, which allows the simulation of both the across-wind action caused by vortices and the lateral response of analysed structures. Vortex excitation simulations were performed in real time taking into account wind-structure interaction. Several structures of circular cross-sections were modelled using a FEM program and calculated under the action of critical vortex excitation. Six steel chimneys, six concrete chimneys and two concrete towers were considered. The method of selection and estimation of the experimental parameters describing the model are also presented. Finally, the results concerning maximum lateral top displacements of the structures are compared with available full-scale data for steel and concrete chimneys.

LEX가 델타형 날개의 와류 유동장에 미치는 영향 (Effects of LEX on the Vortex Field over a Delta Wing)

  • 백승욱;손명환
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of a leading edge extension(LEX) on the vortex flow field over a delta wing by measuring the total pressure distribution in a subsonic wind tunnel. Freestream velocity was 40m/sec and Reynolds number per meter was $1.76{\times}10^6$. The wing with the LEX experienced a strong interaction between the LEX and wing vortices. As the angle of attack increased, the coupled vortex field of these two vortices maintained its strength and concentricity much better than the vortex field over the wing without the LEX.

노즐형상 변화에 따른 국한 슬롯형 제트의 비정상 거동에 대한 실험적 연구 (An experimental study of the unsteady flow in a confined slot jet by the change of nozzle shape)

  • 민영욱;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.55-58
    • /
    • 2006
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated by using cinematic Particle Image Velocimetry technique. The three different kinds of confined slot were applied to the jet with a view to evaluating the shape effect and the jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. It was found that the vortex structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Finally, the slot shape was proved to be related with the generation timing of vortex pair and the temporal vortex structure.

  • PDF

대향류 반응 및 비반응 유동장에서의 단일 와동의 동적 거동 (Dynamic Behaviors of a Single Vortex in Counter Non-reacting and Reacting Flow Field)

  • 유병훈;오창보;황철홍;이창언
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1262-1272
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the dynamic behaviors of a single vortex in counter reacting and non-reacting flow field. A predictor-corrector-type numerical scheme with a low Mach number approximation is used in this simulation. A 16-step augmented reduced mechanism is adopted to treat the chemical reaction. The budget of the vorticity transport equation is examined to reveal a mechanism leading to the formation, destruction and transport of a single vortex according to the direction of vortex generation in reacting and non-reacting flows. The results show that air-side vortex has more larger strength than that of fuel-side vortex in both non-reacting and reacting flows. In reacting flow, the vortex is more dissipated than that in non-reacting flow as the vortex approach the flame. The total circulation in reacting flow, however, is larger than that in non-reacting flow because the convection transport of vorticity becomes much large by the increased velocity near the flame region. It is also found that the stretching and the convection terms mainly generate vorticity in non-reacting and reacting flows. The baroclinic torque term generates vorticity, while the viscous and the volumetric expansion terms attenuate vorticity in reacting flow. Furthermore, the contribution of volumetric expansion term on total circulation for air-side vortex is much larger than that of fuel-side vortex. It is also estimated that the difference of total circulation near stagnation plane according to the direction of vortex generation mainly attributes to the convection term.

2개의 블레이드로 구성된 회전익 끝와류들의 간섭 특성 (Experimental Study on the Evolution of Tip Vortex Structures Generated by a Two-Bladed Rotor)

  • 손용준;박병호;한용운
    • 대한기계학회논문집B
    • /
    • 제35권7호
    • /
    • pp.709-715
    • /
    • 2011
  • 대칭익형 단면에 미세한 피치각의 차이를 가지는 두 개의 로터 블레이드의 끝에서 발생하는 와류들의 상호 간섭을 관측하기 위하여 2차원 LDV를 활용하여 끝와류의 회전속도 성분과 축방향속도 성분들을 후류시기에 따라서 측정하였다. 선행 블레이드는 끝와류 축방향 성분이 정규분포를 나타내는 상사성을 위배한 반면, 후행 블레이드는 회전속도 성분이 복합와류를 나타내는 Vatistas' n=2 모형의 상사성을 위배하는 것으로 관찰되었다. 또한, 후류시기 200~240도 근방에서 두 끝와류의 궤적이 근접되어 상호 간섭을 나타내는 것으로 밝혀졌으며 이 시기 동안 후행블레이드의 와류이완 현상이 발생하는 것으로 확인이 되었다. 이러한 후류 간섭은 관절형 허브를 가지는 로터에서도 발생될 것으로 예측된다.

퓨리에 변환을 활용한 유동 가시화 비교 분석 (Analysis of Flow Visualization Results Using Fourier Transform)

  • 구본국;박준모;강용덕
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.199-204
    • /
    • 2019
  • 경계층 내 측정된 유속은 변동 성분을 활용한 표준편차 혹은 배경 유속을 포함한 평균 속도로 해석되어 왔다. 하지만, 각각의 결과로 유동 상호작용을 설명하는데 한계가 있어 본 논문에서는 시간 영역의 유속을 퓨리에 변환하여 주파수 분석으로 유동 현상을 규명하는 방법을 제안한다. 이를 위해 경계층 내 평판 위에 부착된 반구 내부로 염료를 주입시켜 후류 영역에서 생성되는 머리핀 와류를 가시화하여 발생 빈도를 계측하였다. 또한 반구 전방의 평판을 뚫어 흡입함으로써 후류 영역 내 유속 변화를 열선 유속계로 측정하였다. 제안된 주파수 분석의 평가를 위해 기존의 통계 해석법과 비교하였으며, 유동의 정성적인 결과에 부합하는 주파수 분석과정을 제시한다.

비정상 유동에서 3 차원 단일 블레이드의 유체-구조 상호작용 해석 (A Fluid-Structure Interaction Analysis of an Isolated Three-Dimensional Blade Subject to a Pulsating Freestream)

  • 조승호;김태현;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3039-3044
    • /
    • 2007
  • A few fluid structure interaction analyses have been developed for turbomachinery blades in comparison with aircraft wings. Also, the existing aeroelastic analyses for turbomachinery blades have been mostly limited to cases with a steady freestream. In reality, however, the inflowing freestream is often pulsating. Therefore, this paper presents stability and forced response analyses of an isolated three-dimensional blade under pulsating freestream conditions. A new three-dimensional unsteady vortex lattice model under a pulsating freestream has been developed in discrete time domain to examine unsteady aerodynamic forces acting on a vibrating blade. The blade's structural behaviors have been analyzed by using a three-dimensional plate model. In the aeroelastic analysis, the flutter onset of a blade under pulsating freestream is predicted by the Floquet analysis. The new time domain method can predict aeroelastic stability as well as time history.

  • PDF

Upwind형 수평축 풍력발전기의 타워 영향에 의한 블레이드 공력 성능 및 하중 변화에 대한 고찰 (Effect of interaction between blade and tower in upwind type HAWT on blade aerodynamic performance and load)

  • 김호건;신형기;박지웅;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.261-264
    • /
    • 2006
  • This paper describes the effects to wind turbine blade aerodynamics due to interaction between blade and tower on upwind type HAWT. In order to analyze effects of blade-tower interact ion, the analyst s program WINFAS which is based on VLM(Vortex Lattice Method), Free wake and FVE model is used. In this study, the changes of wind turbine blade aerodynamics caused by blade-tower interact ion are Investigated with various parameters windshear, yaw error, TSR and tower diameter.

  • PDF