• Title/Summary/Keyword: Vortex Flow

Search Result 1,919, Processing Time 0.031 seconds

Aeroelastic analysis of bridges using FEM and moving grids

  • Selvam, R. Panneer;Govindaswamy, S.;Bosch, Harold
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.257-266
    • /
    • 2002
  • In the recent years flow around bridges are investigated using computer modeling. Selvam (1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larsen and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the approaches reported by Selvam et al. (1998). It is expected that the computational time required to compute the critical velocity using this approach may be much shorter than the traditional approach. The computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement. The no flutter and flutter conditions are illustrated using the bridge response in time.

Effect of the Combustor Geometries on Combustion and NOx Emission Characteristics in a Lean Premixed Micro Gas Turbine (희박예혼합 마이크로 가스터빈 연소기 형상에 따른 연소특성 및 NOx 배기특성에 관한연구)

  • Choi, Minsung;Won, Onnuri;Kim, Minkuk;Na, Jongmoon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.229-231
    • /
    • 2012
  • A numerical analysis of a lean premixed combustor in a micro gas turbine was carried out to investigate the correlation between the turbulent mixing and emission characteristics on the combustor geometries. The interaction between the burners, by flow direction and momentum, significantly influenced on the turbulent mixing and combustion characteristics. The vortex which was generated by thermal expansion was observed during the combustion process, this was distinguished from the combustor geometries. The results showed that these characteristics can affect the NOx emission.

  • PDF

Numerical Analysis of Wasted Heat Recovery Ventilator for Improving the Heat Exchange Efficiency (폐열회수 환기장치의 열교환 효율 개선을 위한 전산수치해석)

  • Kim, Hyun-Il;Kim, Jae-Sung;Park, Chul-Woo;Park, Kyung-Seo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, we performed numerical analysis to improve the heat exchange efficiency of wasted heat recovery ventilator which has a delivery and a exhaustion fan. One of the most important design factors that affect the efficiency of heat exchange is uniform counter-flow between inbound and outbound air flows. We had simulated several types of porous plates which were installed at air intake area. With plate having 45 degrees of installation angle and 15 mm diameter holes which are uniformly arranged, we can generate a uniform air flows at the area of porous media where inbound and outbound air flows are cross over. In addition, we installed a duct to reduce vortex flows at the outlet and to discharge exhaust airs rapidly. By using the proposed numerical assessment, we expect the improvement of the heat exchange efficiency of ventilator.

Negative DC-shift Instability in Hybrid Rocket (하이브리드 로켓에서의 Negative DC-shift 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.522-525
    • /
    • 2009
  • DC-shift phenomenon can be observed in Hybrid rocket combustion. This phenomenon makes performance drop which is structure problem or reduce thrust. Understanding of DC-shift phenomenon, the condition of the hybrid rocket combustion stability can be found. In this paper, the condition of Negative DC-shift was found and made by changing oxidizer flow with pre-post chamber. The Negative C-shift phenomenon and characteristic were defined from the experimental study.

  • PDF

Flamelet Modeling for Combustion Processes of Hybrid Rocket Engine (화염편 모델을 이용한 하이브리드 로켓의 연소과정 해석)

  • Lim, Jae-Bum;Kim, Yong-Mo;Yoon, Myung-Won
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.245-248
    • /
    • 2006
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. Accordingly, the recent research efforts are focused on the improvement of engine efficiency and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the flamelet model and Low Reynolds number $k-{\varepsilon}$ turbulent model is employed to reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect. Based on numerical results, the detailed discussions have been made for the effects of oxygen injection methods and oxygen injection flow rate on flame structure and regression rate in the vortex hybrid rocket engines

  • PDF

Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics (MIT 요동 익형의 수치해석 : 비정상 유동 특성)

  • Bae Sang Su;Kang Dong Jin;Kim Jae Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

Improvement of Paraglider by Using Axiomatic Approach (공리적 접근법을 이용한 패러글라이더 성능 개선에 관한 연구)

  • 류상우;차성운;임웅섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.719-722
    • /
    • 2001
  • Paraglider has been used for a good air sports instrument by many people in the world though its short history. And manufacturers have improved it continuously. It has the great growth from the first model like parachute to the latest model that has the extreme speed, but we can improve it in more parts. In this paper, we will show the method which can improve its performance by using Axiomatic Approach.

  • PDF

Turbulence Effects on Wind-Induced Response of Rectangular Sections with Fairing (페어링부착단면의 풍응답특성에 미치는 난류효과에 관한 연구)

  • Kim Heeduck;Kim Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.439-442
    • /
    • 2002
  • In this study, a turbulence simulation is carried out in a suction type wind tunnel using grids, where turbulent flows with various turbulence intensity are successfully produced by the change of grid size, arrangement of grids and settling position, respectively. Response tests of rectangular cylinder models with aspect ratio of 2 and 4 are carried out in smooth flow and generated turbulent flows. Additionally, two types of fairing are considered such as right triangle and regular triangle. The effects of wind velocity fluctuations and fairing are discussed on vortex-induced oscillation.

  • PDF

The Effects of Surface Roughness on Heat Transfer in The Reciprocating Channel (왕복운동을하는 채널에서 표면거칠기가 열전달에 미치는 영향)

  • Ahn Soo Whan;Son Kang Pil
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.333-336
    • /
    • 2002
  • This paper describes a detailed experimental Investigation of heat transfer In a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively, in the ranges, $1,000\;{\~}\;6,000,\;1.7\;{\~}\;2.5\;Hz,\;and\;7\;{\~}\;15cm$ with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (a), Case (d), Case (c), and Case (b)

  • PDF

Numerical Simulation of Flows Past Two Spheres (II) -Two Spheres Arbitrarily Positioned- (2개의 구를 지나는 유동에 대한 수치 해석적 연구 (II) - 일반적인 각도로 2개의 구를 지나는 유동 -)

  • Yoon Dong-Hyeog;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1313-1320
    • /
    • 2005
  • In this investigation, we studied the wake interactions incurred by two nearby spheres at Re=300. We considered all possible arrangements of the two spheres in terms of the distance between the spheres and, the angle inclined with respect to the flow direction. It turns out that significant changes in shedding characteristics are noticed depending on how the two spheres are positioned. In this study, not only quantitative changes in the key physical parameters such as force coefficients and shedding frequencies, but also qualitative changes in shedding patterns are analyzed and reported.