• 제목/요약/키워드: Vortex Dominated Flow

검색결과 22건 처리시간 0.031초

PIV 측정 흐름형태에 의한 타원형 날개꼴의 동적 실속 특성 연구 (A Study on the Dynamic Stall Characteristics of an Elliptical Airfoil by Flow Pattern Measured by PIV)

  • 이기영;손명환;정형석
    • 한국군사과학기술학회지
    • /
    • 제8권3호
    • /
    • pp.116-123
    • /
    • 2005
  • An experimental investigation on the static and dynamic stall characteristics of elliptic airfoil was performed by PIV velocity field measurements. The flow Reynolds number was $3.13{\times}10^5$ and the reduced frequency of the pitch oscillation ranged from 0.075 to 0.125. The onset of static stall was caused by boundary layer separation which started at the trailing edge and progressed toward the leading edge. However, dynamic stall was caused by the vortex shed at the leading edge region and the flow field showed a vortex dominated flow with turbulent separation and alternate vortex shedding. The increase of reduced frequency increased the dynamic stall angle of attack and intensified the flow hysteresis in the down-stroke phase.

진공청소기 원심홴의 유동과 소음원 해석 (An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan)

  • 전완호;유기완;이덕주;이승갑
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계 (3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE)

  • 정재호;유철;이정상;김기현;최재웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

Vortex-induced vibration characteristics of multi-mode and spanwise waveform about flexible pipe subject to shear flow

  • Bao, Jian;Chen, Zheng-Shou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.163-177
    • /
    • 2021
  • Numerical simulations of the Vortex-Induced Vibration (VIV) about a large-scale flexible pipe subject to shear flow were carried out in this paper. Efficiency verification was performed firstly, validating that the proposed fluid-structure interaction solution strategy is competent in predicting the VIV response. Then, the VIV characteristics related to multi-mode and spanwise hybrid waveform about the flexible pipe attributed to shear flow were investigated. When inflow velocity rises, higher vibration modes are apt to be excited, and the spanwise waveform easily convertes from a standing-wave-dominated status to a hybrid standing-traveling wave status. The multi-mode or even multiple-dominant-mode is prone to occur, that is, the dominant mode is often followed by several apparent subordinate modes with considerable vibration energy. Hence, the shedding frequencies no longer obey Strouhal law, and vibration trajectories become intricate. According to the motion analysis concerning the coupled cross-flow and in-line vibrations, as well as the corresponding wake patterns, a tight coupling interaction exists between the structural deformation and the wake flow behind the flexible pipe. In addition, the evolution of the vortex tube along the pipe span and a strong 3D effect are observed due to the slenderness of the flexible pipe and the variability of the vortex shedding attributed to the shear flow.

Numerical investigations on the along-wind response of a vibrating fence under wind action

  • Fang, Fuh-Min;Ueng, Jin-Min;Chen, J.C.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.329-336
    • /
    • 2002
  • The along-wind response of a surface-mounted elastic fence under the action of wind was investigated numerically. In the computations, two sets of equations, one for the simulation of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding. The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of the flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.

성층화된 Taylor-Couette 유동에 대한 전산해석적 연구 (Numerical Simulation of Stratified Taylor-Couette Flow)

  • 황종연;양경수;김동우
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.630-637
    • /
    • 2006
  • The flow regimes for a Taylor-Couette flow with a stable, axial stratification in density are investigated using numerical simulation. The flow configuration identical to that in the experiment of Boubnov, et al. (1995) is considered in the present research. The main objectives of this investigation are to verify the experimental and numerical results carried out by Boubnov, et al. and Hua et al. (1997), respectively, and to further study the detailed flow fields and flow bifurcations. With increasing buoyancy frequency of the fluid (N), the stratification-dominated flow regime, called the S-regime, is observed. It is also confirmed that the important effect of an axial density stratification is to stabilize the flow field. The present numerical results are in good agreement with Boubnov, et al. and Hua et al.'s observations.

3차원 LDV를 이용한 실린더내 공기 유동특성에 관한 연구 (A Study on the Characteristics of In-Cylinder Air Flow with 3-D LDV Measurement)

  • 유성출
    • 한국분무공학회지
    • /
    • 제11권1호
    • /
    • pp.39-47
    • /
    • 2006
  • In-cylinder flows in a motored 3.5L four-valve SI engine were investigated quantitatively using three-component LDV system, to determine how engine configuration affects the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, two distinct intake/piston arrangements were used to examine the flow characteristics. Quantification of the flow field was done by calculating two major parameters which are believed to characterize adequately in-cylinder motion. These quantities were turbulent kinetic energy(TKE) and tumble ratio in each plane at each crank angle. The results showed that in-cylinder flow pattern is dominated by the intake effects and two counter rotating vortices, developed during the intake stroke, produced relatively low tumble ratio. Therefore, the applicability of these quantities should be carefully considered when evaluating characteristics resulting from the complex in-cylinder flow motions.

  • PDF

정적믹서의 유동특성에 대한 수치적 연구 (Numerical Study of Flow Characteristics in Static Mixers)

  • 양희천;박상규;오승원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1957-1962
    • /
    • 2004
  • The objective of this study is to perform the numerical investigation of flow characteristics in static mixers. Simulations are carried out for mixers consisting of up to six Kenics and PPM elements placed end-to-end at an angle of $90^{\circ}$and for a range of Reynolds number($1{\leq}Re{\leq}100$). The pressure drop across a six-element Kenics mixer is computed and compared with the previous experimental correlations. The results are in good agreement with the previous correlations. The simulated flow field of Kenics mixer is extremely complex and contains regions of transverse flow that is dominated by the interaction of vortices produced by the mixer elements.

  • PDF

방향성을 갖는 비정렬 삼각형격자를 이용한 단조 유선 Upwind 유한요소해석 (The Monotone Streamline Upwind Finite Element Method Using Directionally Aligned Unstructured Grids)

  • 지선구;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.49-54
    • /
    • 1997
  • Rice's monotone streamline upwind finite element method, which was proposed to treat convection-dominated flows, is applied to the linear triangular element. An alignment technique of unstructured grids with given velocity fields is used to prevent the interpolation error produced in evaluating the convection term in the upwind method. The alignment of grids is accomplished by optimizing a target function defined with the inner-product of a properly chosen side vector in the element with the velocity field. Two pure advection problems are considered to demonstrate the superiorities of the present approach in solving the convection-dominated flow on the unstructured grid. Solutions obtained with aligned grids are much closer to the exact solutions than those with initial regular grids. The capability of the present approach in predicting the appearance of the secondary vortex in the laminar confined jet impingement is shown by comparing streamlines to those produced by SIMPLE on a highly stretched grid toward the impingement plate.

  • PDF

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.