• Title/Summary/Keyword: Vortex Center

Search Result 306, Processing Time 0.03 seconds

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.337-339
    • /
    • 2008
  • As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

The Ultimate Pattern of Shock-Vortex Interaction

  • Chang, Keun-Shik;Barik, Hrushikesh;Chang, Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.337-339
    • /
    • 2008
  • Abstract: As a shock impinges into a vortex of variable strength, complex shock diffraction can occur. Since a vortex has a fixed rotating direction, the shock wave travelling in one direction creates strong asymmetry in the vortex flow field. The process is that first the shock is divided into two parts by the vortex. One part is moving in the adverse direction opposite to the vortex flow which is captured by the vortex center. The other part is moving in the favorable direction, namely, in the direction same as the vortex flow; it is swung around the vortex, accelerating the vortex flow. In this paper we have investigated numerically using ENO scheme how and why the shock-vortex interaction patterns appear so different for different parametric values. Conclusion is that there are three different types of shock-vortex interaction depending on two related parameters: shock Mach number and vortex Mach number. We present a parameter map by which we can discern what type of interaction pattern appears as a shock impinges into a vortex.

  • PDF

Change of Vortex Dynamics in the Cylinder Wake by the Lock-on to Oscillatory Incident Flow (진동 유동장에서 유동공진에 의한 실린더 후류의 와류 특성 변화)

  • Kim, Won-Tae;Sung, Jae-Yong;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1645-1654
    • /
    • 2003
  • When vortex shedding is locked-on to a single frequency oscillatory flow, the variations of vortex dynamics are investigated using a time-resolved PIV system. Wake regions of recirculation and vortex formation, dynamic behavior of the shed vortices and the Reynolds stress fields are measured in the wake-transition regime at the Reynolds number 360. In the lock-on state, reduction of the wake region occurs and flow energy distributed downstream moves upstream being concentrated near the cylinder base. To observe the dynamic behavior of the shed vortices, the trajectory of the vortex center extended to the inside of the wake bubble is considered, which describes well the formation and evolution processes. The Reynolds stresses and their contributions to overall force balance on the wake bubble manifest the increase of the drag force by the lock-on.

A Study on Vortex Pair Interaction with Fluid Free Surface

  • Kim, K.H.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.26-31
    • /
    • 2005
  • Today, the research to examine a fact that interaction between the air and the fluid free surface affects the steady state flow and air. We proved the interaction between vortex pairs and free surface on each condition that is created by the end of delta wings. Another purpose of this study is to investigate the effect of surface active material which call change the surface tension and we must consider when we refer to turbulent flow on surface tension. Therefore, this research examined the growth process of vortex pairs on condition of clean, contaminated free surface and wall after we made vortex pairs through counter rotating flaps. The results of this study suggest that vortex pairs in clean free surface rise safely but the vortex pairs in contaminated free surface and rigid, no slip is made secondary vortex or rebounding. However the secondary vortex in rigid, no slip is stronger than before. and we can find the vortex shape which roll up more completely. However, these will disappear by the effect of wall.

  • PDF

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (II) - Variation of Leakage Vortex with Tip Clearance and Attack Angle - (축류 회전차 익말단 틈새유동에 대한 수치해석(II) - 틈새변화 및 영각변화에 따른 누설와류의 변화 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1106-1112
    • /
    • 1999
  • Substantial losses behind axial flow rotor are generated by the wake, various vortices in the hub region and the tip leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip is one of the main causes of the reduction of performance, generation of noise and aerodynamic vibration in downstream. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The numerical technique was based on SIMPLE algorithm using standard $k-{\varepsilon}$ model(WFM) and Launder & Sharma's Low Reynolds Number $k-{\varepsilon}$ model(LRN). Through calculations, the effects of tip clearance and attack angle on the 3-dimensional flow fileds behind a rotor and leakage flow/vortex were investigated. The presence of tip leakage vortex, loci of vortex center and its behavior behind the rotor for various tip clearances and attack angles was described well by calculation.

Wake Flow Characteristics around the Side Mirror of a Passenger Car (승용차 외장측면거울 주위의 유동 특성)

  • Han, Yong-Oun;Kim, Jung-Hyun;Hwang, In-Ho;Seo, Jung-Bok;Lim, Byung-Hoon;Jung, Ui-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2573-2578
    • /
    • 2007
  • In order to investigate the vortex body frame interaction around the side mirror of a passenger car, velocity vector fields in the wake, pressure distributions and boundary layer flows over both the mirror surface and the mirror housing, have been measured by several experimental tools. It was resulted that only within an half downstream distance of the mirror span there appears the recirculation zone, and also found that vortex trail towards to the driver side window between A and B pillars, making the acoustic noise and vibration. Wake vortex rolls up after this recirculating zone and makes the trail of the vortex center towards the driver side window, which was also confirmed by measurements of wake velocity vectors in the vertical sections of the trail and visualization over the side mirror surfaces as well. It was also observed that total pressure distribution over the mirror surface has the minimum peak near the lower tip region which can be considered as the origin of the vortex center. It can be concluded that the geometrical modification of the lower tip and the upper root area of the mirror housing is the key to control the wake vortex.

  • PDF

축류회전차 익말단 틈새유동에 대한 수치해석

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.336-345
    • /
    • 1998
  • The substantial loss behind axial flow rotor was generated by wake, various vortices in the hub region and the leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip was one of the main causes of the reduction of performance, the generation of noise and the aerodynamic vibration in rotor downstream. In this study, the three-dimensional flowfields in an axial flow rotor for various tip clearances were calculated, and the numerical results were compared with the experimental ones. The numerical technique was based on SIMPLE algorithm using standard k-.epsilon. model (WFM). Through calculations, the effects of the tip clearance on the overall performance of rotor and the loss distributions, and the increase in the displacement, momentum, and blade-force-deficit thickness of the casing wall boundary layer were investigated. The mass-averaged flow variables behind rotor agreed well with the experimental results. The presence of the tip leakage vortex behind rotor was described well. Although the loci of leakage vortex by calculation showed some differences compared with the experimental results, its behavior for various tip clearances was clarified by examining the loci of vortex center.

Investigation of vortex core identification method for wind turbine wake (터빈 후류를 관찰하기 위한 와류 코어 식별 기법 연구)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • In this study, we conduct a numerical experiment of the single 5MW NREL wind turbine and compare the performance of various vortex core identification for the wake behind the wind turbine. In the kinetic analysis of wind turbine, 20% velocity deficit at 200 s is observed, showing wake which contains tip vortex near blade tip and rotor vortex at the center of the wind turbine. Time series of velocity and turbulent intensity show numerical simulation converge to a quasi-steady state near 200 s. In the comparison between methods for vortex identification, ${\lambda}_2$-method has good performance in terms of tip vortex, rotor vortex, vortex during its cascade process compared to vorticity magnitude criteria, ${\Delta}$-method. We conclude that ${\lambda}_2$-method is suitable for vortex identification method for wake visualization.

Magnetization Behavior of Co Nanodot Array

  • Chang, Joon-Yeon;Gribkov, B.A.;Kim, Hyung-Jun;Koo, Hyun-Cheol;Han, Suk-Hee;Mironov, V.L.;Fraerman, A.A.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.17-20
    • /
    • 2007
  • We performed magnetic force microscopy (MFM) observation on array of Co dots in order to understand magnetic state and magnetization behavior of submicron sized Co dots patterned on GaMnAs bridge. MFM observations showed the magnetization reversal and processes of local magnetization of individual ferromagnetic Co nanodots. Magnetic state of Co dots either single domain or vortex is dependent on geometrical size and thickness. Transition from single domain to vortex state can be realized with MFM tip assisted local field. Magnetization reversal process takes place through sequential reversal of individual dots. Localized inhomogeneous magnetic field can be manipulated by controlling magnetic state of individual Co dot in the array structure.