• Title/Summary/Keyword: Vortex Cavitation

Search Result 93, Processing Time 0.022 seconds

A study on the identification of underwater propeller singing phenomenon (수중 프로펠러 명음 현상의 규명에 관한 연구)

  • Kim, Taehyung;Lee, Hyoungsuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • This paper is a study on the generation mechanism of propeller singing based on the cavitation tunnel test, underwater impact test, finite element analysis and computational flow analysis for the model propeller. A wire screen mesh, a propeller and a rudder were installed to simulate ship stern flow, and occurrence and disappearance of propeller singing phenomenon were measured by hydrophone and accelerometer. The natural frequencies of propeller blades were predicted through finite element analysis and verified by contact and non-contact impact tests. The flow velocity and effective angle of attack for each section of the propeller blades were calculated using RANS (Reynolds Averaged Navier-Stokes) equation-based computational fluid analysis. Using the high resolution analysis based on detached eddy simulation, the vortex shedding frequency calculation was performed. The numerical predicted vortex shedding frequency was confirmed to be consistent with the singing frequency and blade natural frequency measured by the model test.

CFD Analysis of Marine Propeller-Hub Vortex Control Device Interaction (프로펠러와 허브 보오텍스 조절장치 상호작용 CFD 해석)

  • Park, Hyun-Jung;Kim, Ki-Sup;Suh, Sung_Bu;Park, Ill-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.266-274
    • /
    • 2016
  • Many researchers have been trying to improve the propulsion efficiency of a propeller. In this study, the numerical analysis is carried out for the POW(Propeller Open Water test) performance of a propeller equipped with an energy saving device called PHVC(Propeller Hub Vortex Control). PHVC is aimed to control the propeller hub vortex behind the propeller so that the rotational kinetic energy loss can be reduced. The unsteady Reynolds Averaged Navier-Stokes(URANS) equations are assumed as the governing flow equations and are solved by using a commercial CFD(Computational Fluid Dynamics) software, where SST k-ω model is selected for turbulence closure. The computed characteristic values, thrust, torque and propulsion efficiency coefficients for the target propeller with and without PHVC and the local flows in the propeller wake region are validated by the model test results of KRISO LCT(Large Cavitation Tunnel). It is concluded from the present numerical results that CFD can be a good promising method in the assessment of the hydrodynamic performance of PHVC in the design stage.

Study on the Vortex Shedding Phenomena Near Free Surface (자유수면 근처에서의 보오텍스 방출 현상에 관한 고찰)

  • Seok-Won Hong;Pan-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.118-131
    • /
    • 1991
  • The effects of free surface on vortex shedding phenomena around a bluff body were studied by both numerical simulation and flow visualization experiments. A vortex method, which approximates the vorticity field as the sum of discrete vortices; was used for the numerical simulation. Flow visualization experiments were performed in the KRISO cavitation tunnel. Hydrogen bubble was used as illumination material. Free surface elevation was also measured during experiments. The hydrodynamic drag and lift were predicted by numerical simulation. The predicted period of vortex shedding was compared with the results of experiments.

  • PDF

Internal Flow Characteristics in the Draft Tube of a Francis Turbine

  • Wei, Qingsheng;Zhu, Baoshan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.618-626
    • /
    • 2012
  • Suppression of abnormal flow phenomena in the Francis hydro turbine is very important to improve the turbine performance. Especially, as cavitation and cavitation surge makes serious problems when the turbine is operated in the range of partial flow rate, optimum method of suppressing the abnormal flow characteristics is required necessarily. Moreover, as swirl flow in the draft tube of the Francis turbine decreases pressure at the inlet of the draft tube, suppression of the swirl flow can be an useful method of suppressing the occurrence of cavitation. In order to clarifying the possibility of suppressing the swirl flow by J-Groove in the draft tube, a series of CFD analysis has been conducted in the range of partial load, designed condition and excessive flow rate of a Francis turbine. A kind of J-Groove is designed and applied to the draft tube of the Francis hydro turbine model. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Groove. In addition, a group of data about the velocity in the draft is presented to show the influence of J-Groove.

Electrochemical and Cavitation Characteristics of Al Thermal Spray Coating with F-Si Sealing (알루미늄 용사코팅의 불소실리콘 봉공재 적용에 따른 전기화학적 및 캐비테이션 특성 평가)

  • Han, Min-Su;Lee, Seung-Jun;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.317-324
    • /
    • 2010
  • Marine transportation by ships is characterized by remote, large-volume and lower rates than the others carry system. Ships account for over 80% of all international trading, and marine transportation is an internationally competitive, strategic, and great national important industry. The construction of larger and faster ships has brought about many problems such as cavitations and erosion corrosion. Cavitations and erosion corrosion make damages on materials and leads to break down members due to continuous physical contacts with shock waves and fluids from the generation and extinction of air bubbles in sea water vortex. The steel used for ship constructions was spray-coated with Al wire, and additionally sealed with fluorine silicone sealing material. Results of experiment, corrosion resistance of sealed thermal spray coating was improved, however in cavitation resistance, the large effect was not appeared. Accordingly, this study applied for thermal spray coating to provide better electrochemical characteristics and corrosion resistance in marine environment.

CFD Code Development Using Open Source Libraries for Shipbuilding and Marine Engineering Industries (소스공개 라이브러리를 활용한 조선 및 해양 산업용 CFD 코드 개발)

  • Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.151-157
    • /
    • 2012
  • The present study explored the possibilities of the applications of open source libraries to shipbuilding and marine engineering industries. A computational fluid dynamics (CFD) code, termed SNUFOAM, was developed and tested for turbulent flow around a ship, free surface flow around a hull, cavitating flow, and vortex shedding dynamics around a cylinder. The results using the developed CFD codes were compared against existing experimental data and solution of commercial CFD codes. SNUFOAM showed the nearly same results as commercial CFD codes and proved to be an alternative to commercial CFD codes for shipbuilding and marine engineering industries.

Vortex-Induced Vibration of Flexible Cylinders Having Different Mass Ratios (원통형 부재의 질량비에 따른 와유기진동 특성연구)

  • Tae-Young Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-103
    • /
    • 1991
  • A series of experiments were performed to see the dependence of the response characteristics of vortex-induced vibration of flexible cylinders on mass rations for marine applications. Experiments were conducted in the $60cm{\times}60cm$ test section of the cavitation tunnel at the Korea Research Institute of Ships and Ocean Engineering using 5 test rods of 60cm length and 6mm diameter with different mass ratios. It was confirmed quantitatively from the experiments that the low mass ratio cylinders have much broader flow velocity range of large amplitude vibrations than high mass ratio ones.

  • PDF

Numerical Analysis of Tip Vortex Flow of Three-dimensional Hydrofoil using B-Spline Higher-order Boundary Element Method (B-Spline 고차 경계요소법을 이용한 3차원 수중익의 날개 끝 와류유동 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Kim, Gun-Do;Lee, Chang-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • A three-dimensional higher order boundary element method based on the B-spline is presented. The method accurately models piecewise continuous bodies and induced velocity potentials using B-spline tensor product representations, and it is capable of obtaining accurate pointwise values for the potential and its derivatives, especially in the trailing edge and tip region of the lift generating body, which may be difficult or impossible to evaluate with constant panel methods. In addition, we implement a wake roll-up and examine the tip vortex formation in the near wake region. The results are compared with existing numerical results and the results of experiments performed out at the cavitation tunnel of Chungnam National University.

Low Speed Design of Rear Rotor in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Momosaki, Simpei;Imanishi, Toshiki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • The application of contra-rotating rotors for higher specific speed pump has been proposed in our studies, which is in principle effective for reducing the rotational speed and/or the pump size under the same specification of conventional axial flow pump. In the previous experiments of our prototype, the cavitation inception at the tip region of the rear rotor rather than that of the front rotor and the strong potential interaction from the suction surface of the rear rotor blade to the pressure surface of the front one were observed, indicating the possibility to further improve the pump performance by optimizing rotational speed combination between the two rotors. The present research aims at the design of rear rotor with lower rotational speed. Considering the fact that the incoming flow velocity defects at the tip region of the rear rotor, an integrated inflow model of 'forced vortex' and 'free vortex' is employed. The variation of maximum camber location from hub to tip as well as other related considerations are also taken into account for further performance improvement. The ideas cited above are separately or comprehensively applied in the design of three types of rear rotor, which are subsequently simulated in ANSYS CFX to evaluate the related pump performance and therefore the whole low speed design idea. Finally, the experimental validation is carried out on one type to offer further proofs for the availability of the whole design method.

PIV Aanalysis of Vortical Flow behind a Rotating Propeller in a Cavitation Tunnel (캐비테이션 터널에서 PIV를 이용한 프로펠러 후류 보오텍스 유동계측 및 거동해석)

  • Paik, Bu-Geun;Kim, Jin;Park, Young-Ha;Kim, Ki-Sup;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.619-630
    • /
    • 2005
  • A two-frame PIV (Particle Image Velocimetry) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from $ 0^{\circ} $ to $ 80^{\circ} $, one hundred and fifty instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors En the propeller wake legion. The slipstream contraction occurs in the near-wake region up to about X/D : 0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.