• 제목/요약/키워드: Von Mises stress

검색결과 534건 처리시간 0.031초

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

증분소성이론에 의한 p-Version 탄소성 유한요소해석 (p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity)

  • 정우성;홍종현;우광성
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.217-228
    • /
    • 1997
  • p-version 유한요소법에 의한 고정밀해석은 응력특이가 발생하는 선형탄성 문제에 매우 적합한 방법으로 인식되고 있다. 해석 결과의 정확도, 모델링의 단순성, 입력자료에 대한 통용성 및 사용자와 CPU 시간의 절감 등 여러장점이 선형탄성 문제에 적용되어 우수성이 입증되었지만, 탄소성 해석분야는 아직 적용이 이루어지지 않고 있다. 그러므로 본 논문에서는 일-경화재료에 대한 구성방정식을 이용하여 정식화된 증분소성이론과 소성유동법칙에 근거한 재료비선형 p-version 유한요소모델이 제안되었다. 비선형방정식을 풀기 위해 Newton-Raphson법과 초기강성도법 등의 반복법이 모색되었다. 제안된 모델을 이용하여 개구부를 가진 사각형 평판과 내압을 받는 두꺼운 실린더, 그리고 등분포하중을 받는 원판해석 등의 수치실험이 수행되었다. 한편, p-version 모델에 의한 해석결과는 문헌의 이론값과 상용유한요소프로그램인 ADINA의 해석결과와 비교 검증되었다.

  • PDF

다물체 동역학 및 유한요소 해석을 통한 과수원용 작업차량 안정성 평가에 관한 연구 (A Study on Stability Estimation of a Orchard Vehicle using Multi-Body Dynamic and Finite Element Analysis)

  • 한창우;손재환;박기진;장은실;우승민
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4142-4148
    • /
    • 2013
  • 경사지 과수의 효율적인 재배 및 관리를 위해 과수원 전용 고소 작업차량 사용이 늘어나고 있다. 이러한 이유로 작업자 안전을 위해 고소 작업차의 안정성에 대해 연구가 요구되고 있다. 본 연구는 경사지 흙길을 주행할 수 있는 4개의 바퀴와 2개의 직교 좌표계 적재함을 가진 과수원 차량의 안정성 평가에 대한 연구이다. 차량 메커니즘에 대한 다물체 동역학(MBD) 해석을 통하여 19.2, $34.6^{\circ}$의 좌우 및 상하 방향의 전복각을 계산할 수 있었다. 바퀴들의 주행 저항과 소요 동력을 결정하였다. 그리고 적재함 프레임의 유한요소해석(FEA)를 통하여 최대응력 146 MPa로 구조적으로 안정하다. 따라서 적재함을 가진 바퀴형 과수원 차량은 정적 및 동적 안정성을 가짐을 알 수 있었다.

두께 감소된 배관 엘보우의 파손 모드에 대한 연구 (A Study on Failure Mode of Pipe Elbows with Wall Thinning)

  • 신규인;윤기봉
    • 한국가스학회지
    • /
    • 제12권2호
    • /
    • pp.57-62
    • /
    • 2008
  • 배관 엘보우의 내호면(intrados)의 과 내부에 국부적으로 두께 감육이 발생한 경우, 내압과 엘보우를 닫는 방향으로의 굽힘하중을 부가하여 파손 모드를 연구하였다. 탄소성해석 시 반력-변위 곡선이 세 그룹으로 나뉘므로 각 그룹의 한 경우씩을 해석하여 소성붕괴에 의한 파손모드의 차이를 확인하였다. 이를 위해 주요 부위에서 하중-국부적응력 곡선이 어떻게 변화하는지 결정하여, 이로부터 관찰된 파손모드와 비교하여 설명하였다. 감육폭이 $90^{\circ}$인 경우 배관은 엘보우 측면부터 소성붕괴가 시작되었으며, $360^{\circ}$인 경우 내호면으로부터 소성변형이 시작되어 서로 다른 파손모드를 보여주었다. 배관의 감육측정에 의한 건전성 평가 시 이와 같은 파손 모드의 차이점을 고려하여 평가를 실시하여야 한다.

  • PDF

Behavior of fully- connected and partially-connected multi-story steel plate shear wall structures

  • Azarafrooza, A.;Shekastehband, B.
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.311-324
    • /
    • 2020
  • Until now, a comparative study on fully and partially-connected steel shear walls leading to enhancing strength and stiffness reduction of partially-connected steel plate shear wall structures has not been reported. In this paper a number of 4-story and 8-story steel plate shear walls, are considered with three different connection details of infill plate to surrounding frame. The specimens are modeled using nonlinear finite element method verified excellently with the experimental results and analyzed under monotonic loading. A comparison between initial stiffness and shear strength of models as well as percentage of shear force by model boundary frame and infill plate are performed. Moreover, a comparison between energy dissipation, ductility factor and distribution of Von-Mises stresses of models are presented. According to the results, the initial stiffness, shear resistance, energy dissipation and ductility of the models with beam-only connected infill plates (SSW-BO) is found to be about 53%, 12%, 15% and 48% on average smaller than those of models with fully-connected infill plates (SPSW), respectively. However, performance characteristics of semi-supported steel shear walls (SSSW) containing secondary columns by simultaneously decreasing boundary frame strength and increasing thickness of infill plates are comparable to those of SPSWs. Results show that by using secondary columns as well as increasing thickness of infill plates, the stress demands on boundary frame decreases substantially by as much as 35%. A significant increase in infill plate share on shear capacity by as much as 95% and 72% progress for the 4-story SSW-BO and 8-story SSSW8, respectively, as compared with non-strengthened counterparts. A similar trend is achieved by strengthening secondary columns of 4-story SSSW leading to an increase of 50% in shear force contribution of infill plate.

쇄빙연구선 ARAON호의 국부 빙하중 추정을 위한 영향계수행렬의 보완 (Enhanced Influence Coefficient Matrix for Estimation of Local Ice Load on the IBRV ARAON)

  • 조성록;최경식;손범식;정성엽;하정석
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.330-338
    • /
    • 2021
  • This paper focuses on the improvement of the influence coefficient matrix method for estimation of local ice load on the icebreaking research vessel ARAON. The influence coefficient matrix relates ice pressure on the hull plate to the measured/calculated hull strain/stress. Conventionally von Mises equivalent stresses representing hull stresses and ice pressure acting on the hull plate are utilized to assemble the influence coefficient matrix. Because of the three dimensional features of the ship-ice collision process, an enhanced method to assemble the influence coefficient matrix is derived considering ice loads in the X, Y, and Z direction simultaneously. Furthermore the location of ice loads acting on hull-plate may fall outside the measuring sensor area, and the enhanced influence coefficient matrix is modified to reduce the difference between the actual and the estimated ice loads by expanding the domain outward from the sensor area. The developed method for enhanced influence coefficient matrix is applied to IBRV ARAON during the 2019 Antarctic ice field test and the local ice loads in three directions are efficiently calculated compared to those by a conventional method.

다수의 연마입자를 고려한 CMP 공정의 Stick-Slip 고찰 (Stick-slip in Chemical Mechanical Polishing Using Multi-Particle Simulation Models)

  • 정소영;성인하
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.279-283
    • /
    • 2018
  • In this study, we investigate the behavior of abrasive particles and change of the stick-slip pattern according to chemical mechanical polishing (CMP) process parameters when a large number of abrasive particles are fixed on a pad. The CMP process is simulated using the finite element method. In the simulation, the abrasive grains are composed of those used in the actual CMP process. Considering the cohesion of the abrasive grains with the start of the CMP process, abrasive particles with various sizes are fixed onto the pad at different intervals so that stick-slip could occur. In this analysis, we determine that when the abrasive particle size is relatively large, the stick-slip period does not change as the pressure increases while the moving speed is constant. However, if the size of the abrasive grains is relatively small, the amount of deformation of the grains increases due to the elasticity of the pad. Therefore, the stick-slip pattern may not be observed. As the number of abrasive particles increases, the stick-slip period and displacement decrease. This is consistent with the decrease in the von Mises yield stress value on the surface of the wafer as the number of abrasive grains increases. We determine that when the number of the abrasive grains increases, the polishing rate, and characteristics are improved, and scratches are reduced. Moreover, we establish that the period of stick-slip increases and the change of the stick-slip size was not large when the abrasive particle size was relatively small.

SNCM439재질의 전차용 엔진클러치 암플랜지 개발 (Development of Engine Clutch Female Flange for Tank Using SNCM439 Material)

  • 김중선;권대규;안석영
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.67-73
    • /
    • 2021
  • Tanks are key weapons of ground combat that are equipped with powerful weapons and have strong protective bodies. One tank component, the engine clutch flange, is located in the part of the tank where the engine and transmission are installed, and it is a key part of the power transfer and shutoff. The engine clutch flange transmits high power to secure the mobility of the tank; thus, it must have high strength and hardness. In addition, high durability and safety must be ensured because tank operations must exclude concerns about damage. In this study, an engine clutch female flange for tanks made of SNCM439 was developed. The 2D design used AutoCAD programs, and the 3D shape design used CATIA programs. The structural analysis was conducted using ANSYS. The mesh grid has a tetrahedron shape and is created by adding a mid-side node. After the mechanical properties and constraints of SNCM439 were entered, the changes in the safety factor, total deformation, and Von-Mises stress were identified according to the increase in torque. Prototype processing was performed to verify the engine clutch female flange for the tank. To determine the productivity of the product, the cutting processing time was measured when processing the prototypes. Based on the results of measuring the cutting processing time, it is concluded that research is needed to improve productivity because MCT slot cutting processing is time consuming.

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • 한국임상수의학회지
    • /
    • 제40권4호
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study

  • Sewoong Oh;Youn-Kyung Choi;Sung-Hun Kim;Ching-Chang Ko;Ki Beom Kim;Yong-Il Kim
    • 대한치과교정학회지
    • /
    • 제53권6호
    • /
    • pp.420-430
    • /
    • 2023
  • Objective: The purpose of this finite element method (FEM) study was to analyze the biomechanical differences and tooth displacement patterns according to the traction direction, methods, and sites for total distalization of the mandibular dentition using clear aligner treatment (CAT). Methods: A finite element analysis was performed on four FEM models using different traction methods (via a precision cut hook or button) and traction sites (mandibular canine or first premolar). A distalization force of 1.5 N was applied to the traction site by changing the direction from -30 to +30° to the occlusal plane. The initial tooth displacement and von Mises stress on the clear aligners were analyzed. Results: All CAT-based total distalization groups showed an overall trend of clockwise or counterclockwise rotation of the occlusal plane as the force direction varied. Mesiodistal tipping of individual teeth was more prominent than that of bodily movements. The initial displacement pattern of the mandibular teeth was more predominant based on the traction site than on the traction method. The elastic deformation of clear aligners is attributed to unintentional lingual tipping or extrusion of the mandibular anterior teeth. Conclusions: The initial tooth displacement can vary according to different distalization strategies for CAT-based total distalization. Discreet application and biomechanical understanding of traction sites and directions are necessary for appropriate mandibular total distalization.