• 제목/요약/키워드: Von Mises equivalent Stress

검색결과 71건 처리시간 0.028초

판재의 이방성을 고려한 연성파단모델 개발 (Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy)

  • 박남수;허훈
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

$45^{\circ}$ 문합각을 가진 동맥과 PTFE 단측 문합의 유한요소해석. (Finite element analysis of the artery and PTFE end-to-side anastomosis with $45^{\circ}$ anastomotic angle.)

  • 한근조;김형태;신정옥;김영호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.104-108
    • /
    • 1995
  • Von Mises stress and compliance distribution was evaluated using a finite element analysis on the anastomosis of an artery with length of 20mm, inner diameter of 4mm, thickness of 0.5mm and a PTFE graft with length of 5.7mm, Inner diameter of 2mm. thickness of 0.2mm. When anastomotic angle was taken as $45^{\circ}$ and inner pressure of $1330\;dyne/mm^2$ was applied inside the 2 conduits. From the analysis results were obtained as follows. (1)Artery diameter increased in both horizontal x and vertical y directions and the magnitude of that in x direction was bigger than in y direction. (2) The compliance was maximum on the anastomosis. especially on that with acute angle. This reduced approaching to the right or left end. (3) The equivalent stress was maximum on top in the y direction and winimum on the nodes around $110^{\circ}$ in circumferential direction from the top. (4) The equivalent stress was maximum in the vicinity of anastomosis with acute angle along the longitudinal direction of the artery. This trend was also observed along the PTFE graft.

  • PDF

선박용 갑판크레인의 지브의 경량화설계 (Weight Reduction Design for a JIB of Deck Crane for Shipment)

  • 한동섭;이문재;한근조
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.396-400
    • /
    • 2009
  • The demand of JIB crane to handle a container or a bulk in a vessel is increasingly because of the growth of the scale of trade through the sea. This deck crane such as JIB crane is required the weight reduction design because it is installed in the deck of a vessel due to the environment regulation. In this study first we carry out the structural analysis of JIB with respect to the luffing angle of it to calculate the maximum equivalent stress of JIB, and next the optimum design for the weight reduction design of JIB. The thickness in a cross section of JIB is adopted as the design variable, the weight of JIB as the objective function, and the von mises stress as the constraint condition for the optimum design of JIB using the ANSYS 10.0.

Sensitivity analysis of shoulder joint muscles by using the FEM model

  • Metan, Shriniwas.S.;Mohankumar, G.C.;Krishna, Prasad
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권2호
    • /
    • pp.115-127
    • /
    • 2016
  • Shoulder pain, injury and discomfort are public health and economic issues world-wide. The function of these joints and the stresses developed during their movement is a major concern to the orthopedic surgeon to study precisely the injury mechanisms and thereby analyze the post-operative progress of the injury. Shoulder is one of the most critical joints in the human anatomy with maximum degrees of freedom. It mainly consists of the clavicle, scapula and humerus; the articulations linking them; and the muscles that move them. In order to understand the behavior of individual muscle during abduction arm movement, an attempt has been made to analyze the stresses developed in the shoulder muscles during abduction arm movement during the full range of motion by using the 3D FEM model. 3D scanning (ATOS III scanner) is used for the 3D shoulder joint cad model generation in CATIA V5. Muscles are added and then exported to the ANSYS APDL solver for stress analysis. Sensitivity Analysis is done for stress and strain behavior amongst different shoulder muscles; deltoid, supraspinatus, teres minor, infraspinatus, and subscapularies during adduction arm movement. During the individual deltoid muscle analysis, the von Mises stresses induced in deltoid muscle was maximum (4.2175 MPa) and in group muscle analysis it was (2.4127MPa) compared to other individual four rotor cuff muscles. The study confirmed that deltoid muscle is more sensitive muscle for the abduction arm movement during individual and group muscle analysis. The present work provides in depth information to the researchers and orthopedicians for the better understanding about the shoulder mechanism and the most stressed muscle during the abduction arm movement at different ROM. So during rehabilitation, the orthopedicians should focus on strengthening the deltoid muscles at earliest.

Effects of overdenture attachment systems with different working principles on stress transmission: A three-dimensional finite element study

  • Turker, Nurullah;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권6호
    • /
    • pp.351-360
    • /
    • 2020
  • PURPOSE. The aim of the present study was to compare the stress distributions on the dental implants, abutments, and bone caused by different overdenture attachment types under functional chewing forces. MATERIALS AND METHODS. The 3D finite element models of the mandible, dental implants, attachment types, and prostheses were prepared. In accordance with a conventional dental implant supported overdenture design, the dental implants were positioned at the bone level in the canine teeth region bilaterally. A total of eight models using eight different attachment systems were used in this study. All the models were loaded to simulate chewing forces generated during the centric relationship (450 N), lateral movement (400 N), protrusive movement (400 N), and also in the presence of a food mass unilaterally (200 N). Stress outputs were obtained as the maximum principal stress and the equivalent von-Mises stress. RESULTS. In all attachment types, higher stress values were observed in the abutments, dental implants, and bone in the magnet attachments in different loading conditions. The highest stress values were observed among the magnet systems in the components of the Titanmagnetics model in all loading conditions (stresses were 15.4, 17.7, and 33.1 MPa on abutment, dental implant, and bone, respectively). The lowest stress value was observed in the models of Zest and O-Ring attachments. CONCLUSION. The results of the present study implied that attachment types permitting rotation and tolerating various angles created lower stresses on the bone, dental implants, and abutments.

Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint

  • Zawidzki, Machi;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • 제21권6호
    • /
    • pp.715-725
    • /
    • 2018
  • Truss-Z (TZ) is an Extremely Modular System (EMS). Such systems allow for creation of structurally sound free-form structures, are comprised of as few types of modules as possible, and are not constrained by a regular tessellation of space. Their objective is to create spatial structures in given environments connecting given terminals without self-intersections and obstacle-intersections. TZ is a skeletal modular system for creating free-form pedestrian ramps and ramp networks. The previous research on TZ focused on global discrete geometric optimization of the spatial configuration of modules. This paper reports on the first attempts at structural optimization of the module for a single-branch TZ. The internal topology and the sizing of module beams are subject to optimization. An important challenge is that the module is to be universal: it must be designed for the worst case scenario, as defined by the module position within a TZ branch and the geometric configuration of the branch itself. There are four variations of each module, and the number of unique TZ configurations grows exponentially with the branch length. The aim is to obtain minimum-mass modules with the von Mises equivalent stress constrained under certain design load. The resulting modules are further evaluated also in terms of the typical structural criterion of compliance.

Precise dynamic finite element elastic-plastic seismic analysis considering welds for nuclear power plants

  • Kim, Jong-Sung;Jang, Hyun-Su
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2550-2563
    • /
    • 2022
  • This study performed a precise dynamic finite element time history elastic-plastic seismic analysis considering the welds, which have been not considered in design stage, on the nuclear components subjected to severe seismic loadings such as beyond-design basis earthquakes for sustainable nuclear power plants. First, the dynamic finite element elastic-plastic seismic analysis was performed for a general design practice that does not take into account the welds of the pressurizer surge line system, one of safety class I components in nuclear power plants, and then the reference values for the accumulated equivalent plastic strain, equivalent plastic strain, and von Mises effective stress were set. Second, the dynamic finite element elastic-plastic seismic analyses were performed for the case of considering only the mechanical strength over-mismatch of the welds as well as for the case of considering both the strength over-mismatch and welding residual strain. Third, the effects of the strength over-mismatch and welding residual strain were analyzed by comparing the finite element analysis results with the reference values. As a result of the comparison, it was found that not considering the strength over-mismatch may lead to conservative assessment results, whereas not considering the welding residual strain may be non-conservative.

얼음의 재료 모델 적용 타당성 연구 (Comparative Study on Material Constitutive Models of Ice)

  • 정준모;남지명;김경수
    • 대한조선학회논문집
    • /
    • 제48권1호
    • /
    • pp.42-48
    • /
    • 2011
  • To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.

어퍼암의 구조적 안전성 해석에 대한 연구 (Study on Structural Safety Analysis of Upper Arm)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.113-125
    • /
    • 2013
  • This study analyzes upper arm as the part of suspension through the structural analyses of fatigue. Maximum displacement is shown at the knuckle joint connected with the bracket of automotive body. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. Maximum life at 'Sample history' or 'SAE transmission' can be shown with 60 or 3.5 times more than 'SAE bracket history' respectively. In case of 'Sample history' with the average stress of $-4{\times}10^4$ to $4{\times}10^4$ MPa and the amplitude stress 0 to $8{\times}10^4$ MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. This study result is applied with the design of upper arm and it can be useful at predicting prevention and durability against its damage.

동력학 시뮬레이션에 의한 다축 랜덤하중 하에서 자동차 서브프레임의 고 되풀이수 피로손상 평가 (High Cycle Fatigue Damage under Multiaxial Random Loading through Dynamic Simulation for an Automotive Sub-Frame)

  • 이학주;강재윤;최병익;김주성
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.946-953
    • /
    • 2003
  • A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of an automotive sub-frame. Elastic Multi Body Simulation (MBS) has been applied in order to determine the multiaxial load histories. The stresses due to these loads have been given by FE computation. These results have been used as the input for the multiaxial fatigue analysis. For the assessment of multiaxial high cycle fatigue damage, the signed von Mises, the signed Tresca, the absolute maximum principal stress and critical plane methods have been employed. In addition, the biaxiality ratio, a$\sub$e/, the absolute maximum principal stress, $\sigma$$\sub$p/ and the angle, $\phi$$\sub$P/, between $\sigma$$\sub$1/ and the local x-axis, have been calculated to evaluate the stress state at each node.