• 제목/요약/키워드: Von Mises

검색결과 696건 처리시간 0.028초

KSLV-1 1단 후방동체 상부 조합체 상세설계 (KSLV-1 1st stage Rear Fuselage Upper Compartment Detail Design)

  • 유재석;정호경;장영순
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.117-131
    • /
    • 2009
  • KSLV-1 1단 후방동체 상부 조합체 상세설계를 수행하였다. 동체 사이징 프로그램으로 기본적인 형상을 결정했다. 체결류 기본설계를 통하여 스킨-프레임, 스트링거-프레임의 체결류 선정하였다. 유한요소 프로그램을 통한 프레임 구조해석 및 인터페이스 확인을 통하여 프레임을 설계하였다. 또한 유한요소 프로그램으로 컷 아웃을 고려한 부분을 해석을 수행하여 구조 안전성을 확인하였다. 전단체결류 설계를 위하여 최대 전단하중에 대한 최대전단응력을 유한요소 방법으로 구하였다. 이러한 동체해석 사이징과 유한요소 및 체결류 선정 프로그램을 사용하여 후방동체 상부조합체의 상세설계를 수행하였다.

  • PDF

유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구 (Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location)

  • 손성식;김영직;이명곤
    • 대한치과기공학회지
    • /
    • 제29권1호
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF

골유착성 치과 임플랜트 고정체 직경에 따른 지지골의 응력분포에 관한 삼차원 유한요소 분석적 연구 (A 3-dimensional Finite Element Analysis of Stress Distribution in the Supporting Bone by Diameters of Dental Implant Fixture)

  • 이명곤
    • 대한치과기공학회지
    • /
    • 제26권1호
    • /
    • pp.69-76
    • /
    • 2004
  • The objective of this finite element method study was to analyze the stress distribution induced on a supporting bone by 3.75mm, 4.0mm, 5.0mm diameter of dental implant fixture(13mm length). 3-dimensional finite element models of simplified gold alloy crown(7mm height) and dental implant structures(gold cylinder screw, gold cylinder, abutment screw, abutment, fixture and supporting bone(cortical bone, cancellous bone) designs were subjected to a simulated biting force of 100 N which was forced over occlusal plane of gold alloy crown vertically. Maximum von Mises stresses(MPa) under vertical loading were 9.693(3.75mm diameter of fixture), 8.885(4.0mm diameter of fixture), 6.301(5.0mm diameter of fixture) and the highest von Mises stresses of all models were concentrated in the surrounding crestal cortical bone. The wide diameter implant was the good choice for minimizing cortical bone-fixture interface stress.

  • PDF

유한요소해석을 이용한 소형펀치-크리프 시험에 관한 연구 (II) - SP-Creep 시험과 일축 크리프 시험의 상관성을 중심으로 - (A Study on Small Punch-Creep Test Using Finite Element Analysis II)

  • 이송인;권일현;김연직;안병국;안행근;백승세;유효선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.111-116
    • /
    • 2001
  • Small punch-creep(SP-Creep) test technique has been applied for evaluating the creep characteristics for high temperature materials. However, in order to evaluate the damage and predict the remaining life, it is necessary to establish a quantitative correlation between SP-Creep and uniaxial-creep test results. This paper presents analytical and experimental results of useful correlation between SP-Creep and uniaxial-creep properties for 9Cr1MoVNb steel at $600{\sim}650^{\circ}C$ in terms of stress(load) and activation energy during creep deformation. Especially, the activation energy obtained from SP-Creep test is linearly related to that from uniaxial-creep test at $650^{\circ}C$ as follows: $Q_{sp-p}{\fallingdotseq}1.37\;Q_{TEN},\;Q_{sp-{\sigma}}{\fallingdotseq}1.53\;Q_{TEN}$.

  • PDF

빌트인 냉장고 댐핑힌지의 응력해석 및 파손방지를 위한 설계개선 (Stress Analysis and Design Improvement to Prevent Failure of the Damping Hinges of Built-in Refrigerators)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.81-88
    • /
    • 2020
  • The damping hinge of a built-in refrigerator was examined in terms of its stress and fatigue life. Analysis of the initial design showed that stress concentration occurred at the concave surface of the hinge lever, which was broken during the door opening-and-closing endurance test of the prototype. The maximum von Mises stress at this location exceeded the yield strength. In addition, Goodman fatigue analysis of the initial design showed that the fatigue life at this location was consistent with the failure observed during the endurance test. Based on these results, an improved design for the damping hinge was derived. Analysis of this improved design showed that the stress concentration in the hinge lever of the initial design was eliminated. In this case, the maximum stress occurred at the position where the hinge lever was in contact with the door stopping pin, and the maximum von Mises stress was smaller than the yield strength. Goodman fatigue analysis of the improved design indicated that the fatigue life of the entire damping hinge was infinite. It was therefore concluded that the improved design does not suffer from fatigue damage during the endurance test.

Experimental and theoretical studies of confined HSCFST columns under uni-axial compression

  • Lai, M.H.;Ho, J.C.M.
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.527-552
    • /
    • 2014
  • The development of modern concrete technology makes it much easier to produce high-strength concrete (HSC) or ultra-high-strength concrete (UHSC) with high workability. However, the application of this concrete is limited in practical construction of traditional reinforced concrete (RC) structures due to low-ductility performance. To further push up the limit of the design concrete strength, concrete-filled-steel-tube (CFST) columns have been recommended considering its superior strength and ductility performance. However, the beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby reducing the elastic strength and stiffness of the CFST columns. To resolve this problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel. In this paper, a total of 29 high-strength CFST (HSCFST) columns of various dimensions cast with concrete strength of 75 to 120 MPa concrete and installed with external steel rings were tested under uni-axial compression. From the results, it can be concluded that the proposed ring installation can further improve both strength and ductility of HSCFST columns by restricting the column dilation. Lastly, an analytical model calculating the uni-axial strength of ring-confined HSCFST columns is proposed and verified based on the Von-Mises and Mohr-Coulomb failure criteria for steel tube and in-filled concrete, respectively.

시일과 스틸면 사이의 구형 마멸입자에 의한 접촉해석 (Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface)

  • 박태조;유재찬;조현동
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.297-301
    • /
    • 2008
  • In many dynamic seals such as lip seal and compression packings, it is well known that wear occur at the surface of heat treated steel shaft as results of the intervened wear particle. It is widely understood that the dominant wear mechanism related in sealing surfaces is abrasive wear. However, little analytical and experimental studies about this problems have been done until now. In this paper, a contact analysis is carried out using MARC to investigate the wear mechanism in contact seal applications considering elastomeric seal, a elastic perfect-plastic micro-spherical particle and steel surface. Deformed seal shapes, contact and von-Mises stress distributions for various particle sizes and interference are showed. The maximum von-Mises stress within steel shaft was exceeded its yield strength and plastic deformation occurred at steel surface. Therefore, the sealing surface can be also worn by sub-surface fatigue due to wear particles together with well known abrasion. The numerical methods and models used in this paper can be applied in design of dynamic sealing systems, and further intensive studies are required.

시일과 코팅된 스틸면 사이의 구형 입자에 의한 접촉해석 (Contact Analysis Between Rubber Seal, a Spherical Particle and Coated Steel Surface)

  • 박태조;조현동
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.225-230
    • /
    • 2009
  • Seals are very useful machine components in protection of leakage of lubricant or working fluid, and incoming of debris from outside. Various elastomer are widely used as sealing materials and the shaft surfaces are generally coated with high hardness material after heat treatment. It is generally known that the foreign debris and wear particles get stuck into sealing surface, the steel shaft surface can be damaged and worn by mainly abrasive wear. In this paper, using MARC, contact analysis are conducted to show the hard coated steel shaft surface can be fatigue failed by very small elastic particle intervened between seal and steel surface. Variations of contact and von-Mises stress distributions and contact half-widths with interference and coating thickness are presented. The maximum von-Mises stress occurs always in the coating layer or between coated layer/substrate interface. Therefore the coated sealing surface can be fatigued and then failed by very small particles. The results can be used in design of sealing surface and further studies are required.

슬관절 재전치환술용 경골삽입물 형상이 접촉압력 분포에 미치는 영향 (Effect of stem design on contact pressure distribution of end-of-stem in revision TKR)

  • 김윤혁;구교민;권오수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.179-180
    • /
    • 2006
  • In this study, the effect of stem-end design on contact pressure and stress distribution in revision TKR was investigated using finite element method. The finite element model of tibia, including the cortical bone, the cancellous bone and canal, was developed based on CT images. The stem models with various stem lengths, diameters and frictional coefficients, and press-fit effects were considered. The results showed that the longer stem length, the stronger press-fit, the bigger stem diameter, and the higher frictional coefficient increased both peak contact pressure and the highest Von-Mises stress values. We hypothesized that peak contact pressure and Von-Mises stress distribution around the stem, may be related to the stem end pain. The results of this study will be useful to design the stem endand reduce the end-of-stem pain in revision TKR.

  • PDF

기둥(Post)과 핵(Core)의 이종재료 조합에 의한 치아의 유한요소해석 (A Finite Element Analysis of Incisors with Different Material Combinations of a Post and a Core)

  • 강민규;탁승민;이석순;서민석;김효진
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.474-481
    • /
    • 2011
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the finite element stress analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia crown were prepared. Each model contained cortical bone, trabecular bone, periodontal ligament, 4mm apical root canal filling, and post-and-core. A 50N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$ angle to the long axis of the tooth. And three parallel type post (zirconia, glass fiber and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. For the Result of the research, the model applied glass fiber to post material has lowest von Mises stress and it is suitable for material of post core systems.