• Title/Summary/Keyword: Volumetric model

Search Result 428, Processing Time 0.023 seconds

Non-self-intersecting Multiresolution Deformable Model (자체교차방지 다해상도 변형 모델)

  • Park, Ju-Yeong;Kim, Myeong-Hui
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • This paper proposes a non-self-intersecting multiresolution deformable model to extract and reconstruct three-dimensional boundaries of objects from volumetric data. Deformable models offer an attractive method for extracting and reconstructing the boundary surfaces. However, convensional deformable models have three limitations- sensitivity to model initialization, difficulties in dealing with severe object concavities, and model self-intersections. We address the initialization problem by multiresolution model representation, which progressively refines the deformable model based on multiresolution volumetric data in order to extract the boundaries of the objects in a coarse-to-fine fashion. The concavity problem is addressed by mesh size regularization, which matches its size to the unit voxel of the volumetric data. We solve the model self-intersection problem by including a non-self-intersecting force among the customary internal and external forces in the physics-based formulation. This paper presents results of applying our new deformable model to extracting a sphere surface with concavities from a computer-generated volume data and a brain cortical surface from a MR volume data.

  • PDF

Seepage Behavior by Artificial Rainfall in Weathered Granite Model Slope (화강풍화토 모형사면의 인공강우 침투거동 해석)

  • Lee, Kumsung;Han, Heuisoo;Chang, Donghun;Yoon, Donggu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.5-12
    • /
    • 2013
  • In this study, weathered granite model tests were performed to investigate the variation of volumetric water content and matric suction by the adsorption and desorption processes of artificial rainfall. It has been compared with numerical analysis in unsaturated condition. As the results, the behaviors of volumetric water content and matric suction were distinguished by the seepage distance separated into higher, middle and lower area, and the drainage layer located at the bottom of the experimental device. In the adsorption process, the instantaneously large change of matric suction and water content were related to the increase of permeability in soil. However, in the desorption process, the change of matric suction and water content were gradually small because of the decrease of permeability. The volumetric water content and matric suction showed the difference according to the seepage distance, however the typical characteristic curves were made by the adsorption and desorption processes.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Robust and Efficient 3D Model of an Electromagnetic Induction (EMI) Sensor

  • Antoun, Chafic Abu;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.325-330
    • /
    • 2014
  • Eddy current induction is used in a wide range of electronic devices, for example in detection sensors. Due to the advances in computer hardware and software, the need for 3D computation and system comprehension is a requirement to develop and optimize such devices nowadays. Pure theoretical models are mostly limited to special cases. On the other hand, the classical use of commercial Finite Element (FE) electromagnetic 3D models is not computationally efficient and lacks modeling flexibility or robustness. The proposed approach focuses on: (1) implementing theoretical formulations in 3D (FE) model of a detection device as well as (2) an automatic Volumetric Estimation Method (VEM) developed to selectively model the target finite elements. Due to these two approaches, this model is suitable for parametric studies and optimization of the number, location, shape, and size of PCB receivers in order to get the desired target discrimination information preserving high accuracy with tenfold reduction in computation time compared to commercial FE software.

Development of Numerical CCM in Pursuit of Accuracy Assessment for Coordinate Measuring Machines (정밀도 성능평가를 위한 3차원 측정기 수치모델 개발)

  • Park, Hui-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.945-959
    • /
    • 1996
  • In this paper, a comprehensive computer model is described which can be used to generate the volumetric error map combining the machine parametric errors and the measurement prove error, for most types of CMMs and axis configurations currently in use.

Statistical Analysis of the Position Errors of a Machine Tool Using Ball Bar Test (볼바 측정을 통한 공작기계 위치오차의 통계적 분석)

  • 류순도;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.501-504
    • /
    • 2001
  • The use of error compensation techniques has been recognized as an effective way in the improvement of the accuracy of a machine tool. The laser measurement method for identifying position errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the position errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving position errors using hemispherical helix ball bar test.

  • PDF

Reactivity Study on the Kideco Coal Catalytic Coal Gasification under CO2 Atmosphere Using Gas-Solid Kinetic Models (기-고체 반응 모델을 이용한 Kideco탄의 이산화탄소 촉매 석탄가스화 반응 특성)

  • Lee, Do Kyun;Kim, Sang Kyum;Hwang, Soon Cheol;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we have investigated the kinetics on the char-CO2 catalytic gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-CO2 catalytic gasification of an Indonesian Kideco sub-bituminous. Na2CO3 and K2CO3 were selected as catalysts which were physically mixed with coal. The char-CO2 catalytic gasification reaction showed a rapid increase of carbon conversion rate at 850 ℃, 60 vol% CO2, and 7 wt% Na2CO3. At the isothermal conditions ranging from 750 ℃ to 900 ℃, the carbon conversion rates increased as the temperature increased. Four kinetic models for gas-solid reaction including the shrinking core model (SCM), random pore model (RPM), volumetric reaction model (VRM), and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM for the Kideco sub-bituminous. The activation energies for each char mixed with Na2CO3 and K2CO3 were found 55-71 kJ/mol and 69-87 kJ/mol.

Analytical Studies on Basic Creep of Concrete under Multiaxial Stresses

  • Kwon, Seung-Hee;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.465-472
    • /
    • 2003
  • Creep Poisson's ratio reported by previous experimental studies on multiaxial creep of concrete was controversial. The Poisson's ratio is very sensitive to small experimental error that is inevitably induced, and the sensitivity may cause the controversy. It is difficulty to find out the properties on multiaxial creep of concrete. Therefore, a new approach method to analyze the test results is needed to precisely understand the properties on multiaxial creep of concrete. In this study, microplane model is used as a new approach method in analyzing the multiaxial creep test data. The six data sets extracted from the literature are fitted from regression analysis. Double-power law as a model representing volumetric and deviatoric creep evolutions on microplane is used, and six parameters in volumetric and deviatoric compliances are determined on the assumption that the volumetric and deviatoric creep strains are linearly proportional to corresponding stresses. The optimum fits give very accurate description of the test data. The Poisson's ratio calculated from the optimum fits varies with time and does not depends on the stress states, namely, uniaxial, biaxial, and triaxial stress states. Regression analysis is also performed on the assumption that the Poisson's ratio remains constant with titre. The constant Poisson's ratio can be use in practice without serious error.

  • PDF

Study on the calculation methods to determine the scale of the sponge city facilities in residential area----- taking Shenzhen as an example

  • Liu, Jian;Dong, Min;Han, Yu-ting;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.337-345
    • /
    • 2017
  • The sponge city construction is being carried out in China, and how to reasonably determine the scale of the sponge city facilities is a key point that the planners and designers should seriously solve. In this paper, taking determination of the sponge city facilities in a residential building in Shenzhen as an example, the layout and scales of the rainwater tanks, raingardens, ecological roofs and permeable pavements are decided by using the volumetric method and stormwater management model (SWMM). The calculated results by the two methods are compared and analyzed. The results show that the scales of the sponge city facilities determined by the two methods are almost the same, and it means that any method can be used to determine the scale of sponge city facilities. The volumetric method is relatively simple, and it is suggested to use to determine the scale of sponge city facilities during planning stage. While SWMM is more complex and requires a lot of input conditions, but it can provide the reduction effects of the sponge city facilities for rainfalls with different recurrence periods. Therefore, SWMM is recommended to use the calculation of the hydrological process of the sponge city facilities during the design stage.

  • PDF

The OMM system for machined form and surface roughness measurement concerned with volumetric error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.681-686
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF