• Title/Summary/Keyword: Volumetric model

Search Result 428, Processing Time 0.029 seconds

A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석)

  • Ahn, Dong-Gyu;Kim, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

A Study on Fluid Flow in the Intake Manifold for an Engine (엔진 흡기관내의 유체유동에 관한 연구)

  • 성낙원;이응석;강건용;엄종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.295-307
    • /
    • 1988
  • In order to predict performance of the intake manifold, which is dependent on the length and diameter of a resonance pipe, the Fluid Dynamic Model for 4-cylinder diesel engine is developed using two step Lax-Wendroff method to solve the governing equations of air flow in the intake system. Boundary conditions at the intake valve, branch at the manifolds, and pipe end are also modeled. The results of the models are compared with the experimental results of a motored engine. The model is capable of predicting the real phenomena satisfactorily with reasonable computing time.

Three-Dimensional Modeling of Void Formation During Resin Transfer Molding (RESIN TRANSFER MOLDING 공정에서의 기공 형성에 관한 3차원 모델링)

  • Bae, Jun-Ho;Kang, Moon-Koo;Lim, Seoug-Taek;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.246-250
    • /
    • 2001
  • In resin transfer molding (RTM), resin is forced to flow through the fiber perform of inhomogeneous permeability. This inhomogeneity is responsible for the mismatch of resin velocity within and between the fiber tows. The capillary pressure of the fiber tows exacerbates the spatial variation of the resin velocity. The resulting microscopic perturbations of resin velocity at the flow front allow numerous air voids to form. In this study, a mathematical model was developed to predict the formation and migration of micro-voids during resin transfer molding. A transport equation was employed to account for the migration of voids between fiber tows. Incorporating the proposed model into a resin flow simulator, the volumetric content of micro-voids in the preform could be obtained during the simulation of resin impregnation.

  • PDF

Machined Surface Inspection Based on Surface Fairing on the Machine Tool (곡면평활화를 고려한 공작기계상에서의 가공곡면 검사)

  • Lee, Se-Bok;Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.937-945
    • /
    • 2000
  • The assessment of machined surface is difficult because the freeform surface must be evaluated by surface fairness as well as dimensional accuracy. In this study, the machined freeform surface is modeled by interpolating the data measured on the machine tool into the mathematical continuous surface, and then the surface model is improved with the parameterization to minimize surface fairness. The accuracy reliability of the measured data is confirmed through compensation of volumetric errors of the machine tool and of probing errors. Non-uniform B-spline surface interpolation method is adopted to guarantee the continuity of surface model. Surface fairness is evaluated with the consideration of normal curvature on the interpolated surface. The validity and usefulness of the proposed method is examined through computer simulation and experiment on the machine tool.

The Model Development of Coupled Thermo-Electromagnetic Analysis in Three-phase Induction Motors by using Heat loss Mapping Method (3상 유도 전동기에서의 열손실 사상법을 이용한 열전달-전자기장 연계 수치 해석 모델 개발)

  • Kim, Dong-Hee;Kim, Chi-Won;Jung, Hye-Mi;Lee, Ju;Um, Suk-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.788-789
    • /
    • 2011
  • A comprehensive thermo-electromagnetic model has been developed to estimate temperature and electromagnetic distribution in an three-phase induction motor under steady state operation. Electromagnetic modeling enables us to predict thermal dissipation rates by eddy-current loss and copper loss in induction motors. Non-uniform temperature distributions are investigated to account for the strong effect of local temperature build-up on the motor performance and expected life-span. For more accurate thermal modeling purpose, Heat loss mapping method, which is matched up with electromagnetic losses and volumetric heat source, is developed and performed analysis. Heat loss mapping method can be greatly used as a design or diagnostic tool for three-phase induction motors with complex structural electromagnetic fields.

  • PDF

Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals

  • Zamiri, Amir R.;De, Suvranu
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-153
    • /
    • 2011
  • In this paper we develop a fully anisotropic pressure and temperature dependent model to investigate the effect of the microstructure on the shock response of ${\beta}$-HMX molecular single and polycrystals. This micromechanics-based model can account for crystal orientation as well as crystallographic twinning and slip during deformation and has been calibrated using existing gas gun data. We observe that due to the high degree of anisotropy of these polycrystals, certain orientations are more favorable for plastic deformation - and therefore defect and dislocation generation - than others. Loading along these directions results in highly localized deformation and temperature fields. This observation confirms that most of the temperature rise during high rates of loading is due to plastic deformation or dislocation pile up at microscale and not due to volumetric changes.

Walsh Analysis of the State of Mixture in Heterogeneous Media and its Application (비균질체의 혼합상태에 대한 Walsh해석과 응용)

  • 박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.164-169
    • /
    • 1986
  • Walsh analysis is applied to the numerical specification of the volume distribution which is the key parameter in the formulation of the constitutive equations of heterogeneous media, indicating the geometrical state of the mixture. An example of two-dimensional volume distribution, its approximation, and the Walsh correlation coefficients are presented and the change of the information distribution in the operations is investigated. The phenomena of information concentration upon the large-scale Walsh coefficients are applied to the volumetric response of porous slids, clarifying the validity of the spherical-model calculation.

Theoretical Investigation on the Efficiency of Nanofluid-based Flat-Plate Solar Collector (나노유체 기반 평판형 태양열 집열기의 효율에 관한 이론적인 연구)

  • Lee, Seung-Hyun;Kim, Hyun-Jin;Jang, Seok-Pil
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.188-193
    • /
    • 2012
  • Recently, the nanofluid which is stably dispersing or suspending of nanoparticles in the conventional heat transfer fluids (HTF) such as water and ethylene glycol has attracted significant interests as a solar thermal energy absorbing medium because they have excellent absorption and thermophysical properties compared to the typical HTF. In the present study, the efficiency of nanofluid-based flat-plate solar collector is analytically evaluated using the theoretical model of energy balance equation. The theoretical model considers the incoming solar radiation as a volumetric heat generation and the water-based single wall carbon nanohorn(SWCNH) nanofluid is used as a solar energy absorbing medium. Finally, the efficiency of nanofluid-based collector is calculated according to the volume fraction of SWCNH using the analytical solution.

  • PDF

An Efficient Volume Rendering for Dental Diagnosis Using Cone Beam CT data (치과 원추형 CT 영상 데이터 분석에 효율적인 볼륨 렌더링 방법)

  • Koo, Yun Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 2012
  • The advantage of direct volume rendering is to visualize structures of interest in the volumetric data. However it is still difficult to simultaneously show interior and exterior structures. Recently, cone beam computed tomography(CBCT) has been used for dental diagnosis. Despite of its usefulness, there is a limitation in the detection of interior structures such as pulp and inferior alveolar nerve canal. In this paper, we propose an efficient volume rendering model for visualizing important interior as well as exterior structures of dental CBCT. It is based on the concept of illustrative volume rendering and enhances boundary and silhouette of structures. Moreover, we present a new method that assigns a different color to structures in the rear so as to distinguish the front ones from the rear ones. This proposed rendering model has been implemented on graphics hardware, so that we can achieve interactive performance. In addition, we can render teeth, pulp and canal without cumbersome segmentation step.

Comparison of Infiltration Rate of Slope in Model Test and Finite Element Analysis (모형시험과 유한요소해석에서 비탈면 강우의 침투량 비교)

  • Yu, Yong-Jae;Kim, Jae-Hong
    • Land and Housing Review
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2018
  • The causes of landslides are dependant on rainfall events and the soil characteristics of a slope. For the conventional slope stability, the slope stability analysis has been carried out assuming the saturated soil theory. But, in order to clearly explain a proper soil slope condition by rainfall, the research should be performed using the unsaturated soil mechanism suitable for a soil slope in the field. In the study, by using two major categories of soils in Korea, such as granite and gneiss weathered soils, landslide model test and finite element method have been compared with the difference of seepage and soil stability analysis. The hydraulic conductivity of gneiss weathered soil is slower than that of granite weathered soil, and the gneiss weathered soil contains much finer soils than the granite weathered soil. It was confirmed that the instability of the slope was progressing slowly due to the slow rate of volumetric water content of the surface layer.