• Title/Summary/Keyword: Volumetric joint count

Search Result 2, Processing Time 0.02 seconds

Estimation of Weight Distribution of Rockfall Block by Joint Measurement And Study on Its Application to Rockfall Simulation (절리조사결과에 의한 현장 낙석무게분포추정 및 추정결과의 낙석시뮬레이션 적용성 검토)

  • Kim, Dong-Hee;Ryu, Dong-Woo;Kim, Su-Chul;Yoon, Sang-Kil;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.67-76
    • /
    • 2007
  • The characteristics of rockfall are determined by virtually all factors and conditions e.g. the physical figure of the slope such as inclination, height, roughness, the elemental figure of the slope such as vegetation and material deposited, and the shape and weight of the rockfall itself. Although it is one of the major factors to be considered in rockfall simulation, little attention has been given to the weight of the rockfall. And, since the size of the rockfall is dominated by joint spacing, the distribution of the rockfall block weight can be predicted as a function of the joint spacing. In this study, the weight distribution of rockfall was estimated by using the method of volumetric joint count, $J_{\nu}$, based on joint spacing, and $RQD-J_{\nu}$. The results indicate that the weight distributions were analogous in two methods, and the distribution was to be $75.3{\sim}76.7%$ for 200 kilograms or lesser, $15.0{\sim}16.6%$ for $200{\sim}400$ kilograms, and $6.7{\sim}9.7%$ for 400 kilograms or more, which show good matches with the actual on-site weight distribution. Therefore, the weight distribution of rockfall suggested in this paper is able to be considered as appropriate data for rockfall simulation.

Analysis of Slope Stability using Cell Unit Evaluation (셀 단위 평가법을 이용한 사면의 안정성 평가)

  • Jang, Bo-An;Poong, Bo-Hyun;Jang, Hyun-Shic
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.405-414
    • /
    • 2008
  • When we evaluate slope stability, we regard the slope homogeneous and evaluate slope stability at the most dangerous portion of slope. However, since conditions and properties of rock mass/soil are different from one location to another within a single slope, slope stability evaluated by current concept can not represent slope correctly. This also result in over-reinforcement at the portion where reinforcement is not necessary. In order to solve these problems, we suggest a cell unit evaluation method in which we apply small rectangular cells in a slope and regard each cell as a single slope. In this method, slopes are classified into soil slope and rock slope depending on materials. Strength of rock, volumetric joint count, spacing of joints, condition of joints, ground water condition and so on are examined and SMR and condition index values are calculated. Finally, all data and results are presented as contour maps. We apply the cell unit evaluation method into 3 cut slopes. SMR values estimated by the new method are larger than those by current concept at most portions of slope, indicating that the new method suggested by this research represent slope stability more correctly than methods which were used. This method will prevent over-reinforcement at the portion of slope where reinforcement is not necessary.