• 제목/요약/키워드: Volumetric imaging

검색결과 118건 처리시간 0.028초

체적 지향형 호흡정지 자기공명 조영술의 가속화에 대한 32채널 코일 어레이의 효용성 (Effectiveness of 32-element Surface Coil Array for Accelerated Volume-Targeted Breath-Hold Coronary MRA)

  • 이현열;서진석;박재석
    • Investigative Magnetic Resonance Imaging
    • /
    • 제13권2호
    • /
    • pp.137-145
    • /
    • 2009
  • 목적: 각각 12개와 32개 요소 표면 코일 어레이를 사용한 가속율이 매우 큰 관상동맥 자기 공명 혈관조영술을 병렬 영상 기법에 적용하고 결과를 비교한다. 방법: 5명의 건강한 지원자에 대하여 1.5T 전신 자기공명영상장치에서 각각 12개와 32개 요소 표면 코일 어레이를 사용한 steady state free precession 자기공명 혈관조영술이 수행되었다. 각 지원자의 좌전하방관상동맥과 우관상동맥을 영상하여 데이터를 얻었다. 데이터는 병렬 영상을 위하여 1에서 6에 이르는 감소율로 부분 추출되었다. 양 코일 어레이 각각에 대하여 지형 인자의 평균, 극대, 그리고 인공물정도가 계산되었다. 결과: 모든 감소율에 있어서, 32개 요소 어레이가 12개 요소 어레이에 비하여 지형인자의 평균과 극대, 그리고 인공물정도가 상당히 줄어들었다 (P << 0.1). 지형인자의 평균은 관상동맥의 영상 방향에 민감한 반면, 지형인자 극대치와 인공물정도는 영상 방향에 독립적이었다. 결론: 가속율이 매우 큰 관상동맥 자기공명 혈관조영술의 병렬 영상 적용에 있어 32개 요소 표면 코일 어레이를 사용함은 인공물과 잡음을 상당히 억제시킨다. 32개 요소 표면 코일 어레이를 사용하여 가속율을 증가시키는 것은 공간 해상도를 향상시키거나 3D관상동맥 자기공명 혈관조영술에 있어서 체적 범위를 증가시킬 수 있는 가능성을 제공한다.

  • PDF

이차원 곡면 어레이를 이용한 실시간 3차원 초음파 영상화 기법 (Real-Time 3-D Ultrasound Imaging Method using a 2-D Curved Array)

  • 김강식;한호산;송태경
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권5호
    • /
    • pp.351-364
    • /
    • 2002
  • 일차원 어레이 변환자를 기계적으로 움직여 3차원 영상을 얻는 기존의 3차원 초음파 영상 기법은 일차원 배열 변환기가 갖는 고도방향 해상도의 저하를 극복하기 어렵다. 한편 이차원 위상 어레이 변환자를 이용하는 실시간 3차원 영상 시스템은 많은 수의 채널 수를 가지기 때문에 고비용의 매우 큰 빔집속부를 필요로 한다. 이러한 문제점을 극복하기 위해 본 논문에서는 2차원 곡면 어레이 상에서 256 채널의 송수신 부구경을 전기적으로 움직이면서 관심영역의 입체영상을 얻을 수 있는 3차원 영상화 기법을 제안하였다. 이를 위해 본 논문에서는 상용 3차원 영상 장치에 사용되는 기계 주사식 일차원 곡면 어레이 변환자와 측방향과 고도방향으로 동일한 시야각을 갖는 이차원 곡면 어레이 변환자를 설계하였다. 또한 제안된 방법에서는 256 개의 제한된 채널 수를 이용하면서도 송수신 부구경의 크기를 증가시켜 보다 향상된 해상도의 영상을 구현하기 위해 직사각형 모양의 부구경에서 네 모서리 부분의 어레이 소자들을 적절히 제거한 형태의 부구경을 사용하였다. 특히 수신시는 고도방향이나 측방향으로한 배열 소자씩 건너뛰는 희박 어레이 기법을 적용하여 수신 부구경의 크기를 증가시켰다. 또한 수신시 희박 어레이로 인한 소자간의 간격 증가로 인해 유발되는 그레이팅 로브 상승을 억제하기 위해 송신시에는 희박 어레이를 적용하지 않고 폴드-오버 어레이 기법을 적용함으로써 송신부구경의 크기를 측방향과 고도방향으로 각각 두배만큼 증가시키는 효과를 얻었다. 제안한 방법을 통해 기존의 기계 주사식 일차원 어레이 변환자를 이용한 실시간 3차원 시스템과 비교하여 측방향으로는 거의 같고 고도방향으로는 훨씬 우수한 해상도의 영상을 획득할 수 있음을 컴퓨터 모사실험을 통해 검증하였다.

Cone-beam computed tomography analysis of accessory maxillary ostium and Haller cells: Prevalence and clinical significance

  • Ali, Ibrahim K.;Sansare, Kaustubh;Karjodkar, Freny R.;Vanga, Kavita;Salve, Prashant;Pawar, Ajinkya M.
    • Imaging Science in Dentistry
    • /
    • 제47권1호
    • /
    • pp.33-37
    • /
    • 2017
  • Purpose: This study aimed to evaluate the prevalence of Haller cells and accessory maxillary ostium (AMO) in cone-beam computed tomography (CBCT) images, and to analyze the relationships among Haller cells, AMO, and maxillary sinusitis. Materials and Methods: Volumetric CBCT scans from 201 patients were retrieved from our institution's Digital Imaging and Communications in Medicine archive folder. Two observers evaluated the presence of Haller cells, AMO, and maxillary sinusitis in the CBCT scans. Results: AMO was observed in 114 patients, of whom 27 (23.7%) had AMO exclusively on the right side, 26 (22.8%) only on the left side, and 61 (53.5%) bilaterally. Haller cells were identified in 73 (36.3%) patients. In 24 (32.9%) they were present exclusively on the right side, in 17 (23.3%) they were only present on the left side, and in 32 (43.8%) they were located bilaterally. Of the 73 (36.3%) patients with Haller cells, maxillary sinusitis was also present in 50 (68.5%). On using chi-square test, a significant association was observed between AMO and maxillary sinusitis in the presence of Haller cells. Conclusion: Our results showed AMO and Haller cells to be associated with maxillary sinusitis. This study provides evidence for the usefulness of CBCT in imaging the bony anatomy of the sinonasal complex with significantly higher precision and a smaller radiation dose.

Topology Preserving Tetrahedral Decomposition Applied To Trilinear Interval Volume Tetrahedrization

  • Sohn, Bong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권6호
    • /
    • pp.667-681
    • /
    • 2009
  • We describe a method to decompose a cube with trilinear interpolation into a collection of tetrahedra with linear interpolation, where the isosurface topology is preserved for all isovalues during decomposition. Visualization algorithms that require input scalar data to be defined on a tetrahedral grid can utilize our method to process 3D rectilinear data with topological correctness. As one of many possible examples, we apply the decomposition method to topologically accurate tetrahedral mesh extraction of an interval volume from trilinear volumetric imaging data. The topological correctness of the resulting mesh can be critical for accurate simulation and visualization.

3D Visualization of Partially Occluded Objects Using Axially Distributed Image Sensing With a Wide-Angle Lens

  • Kim, Nam-Woo;Hong, Seok-Min;Lee, Hoon Jae;Lee, Byung-Gook;Lee, Joon-Jae
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.517-522
    • /
    • 2014
  • In this paper we propose an axially distributed image-sensing method with a wide-angle lens to capture the wide-area scene of 3D objects. A lot of parallax information can be collected by translating the wide-angle camera along the optical axis. The recorded wide-area elemental images are calibrated using compensation of radial distortion. With these images we generate volumetric slice images using a computational reconstruction algorithm based on ray back-projection. To show the feasibility of the proposed method, we performed optical experiments for visualization of a partially occluded 3D object.

Automatic Volumetric Brain Tumor Segmentation using Convolutional Neural Networks

  • Yavorskyi, Vladyslav;Sull, Sanghoon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.432-435
    • /
    • 2019
  • Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.

  • PDF

A Comparison Study of Volumetric Modulated Arc Therapy Quality Assurances Using Portal Dosimetry and MapCHECK 2

  • Jin, Hosang;Jesseph, Fredrick B.;Ahmad, Salahuddin
    • 한국의학물리학회지:의학물리
    • /
    • 제25권2호
    • /
    • pp.65-71
    • /
    • 2014
  • A Varian Portal Dosimetry system was compared to an isocentrically mounted MapCHECK 2 diode array for volumetric modulated arc therapy (VMAT) QA. A Varian TrueBeam STx with an aS-1000 digital imaging panel was used to acquire VMAT QA images for 13 plans using four photon energies (6, 8, 10 and 15 MV). The EPID-based QA images were compared to the Portal Dose Image Prediction calculated in the Varian Eclipse treatment planning system (TPS). An isocentrically mounted Sun Nuclear MapCHECK 2 diode array with 5 cm water-equivalent buildup was also used for the VMAT QAs and the measurements were compared to a composite dose plane from the Eclipse TPS. A ${\gamma}$ test was implemented in the Sun Nuclear Patient software with 10% threshold and absolute comparison at 1%/1 mm (dose difference/distance-to-agreement), 2%/2 mm, and 3%/3 mm criteria for both QA methods. The two-tailed paired Student's t-test was employed to analyze the statistical significance at 95% confidence level. The average ${\gamma}$ passing rates were greater than 95% at 3%/3 mm using both methods for all four energies. The differences in the average passing rates between the two methods were within 1.7% and 1.6% of each other when analyzed at 2%/2 mm and 3%/3 mm, respectively. The EPID passing rates were somewhat better than the MapCHECK 2 when analyzed at 1%/1 mm; the difference was lower for 8 MV and 10 MV. However, the differences were not statistically significant for all criteria and energies (p-values >0.05). The EPID-based QA showed large off-axis over-response and dependence of ${\gamma}$ passing rate on energy, while the MapCHECK 2 was susceptible to the MLC tongue-and-groove effect. The two fluence-based QA techniques can be an alternative tool of VMAT QA to each other, if the limitations of each QA method (mechanical sag, detector response, and detector alignment) are carefully considered.

3차원 생물체 가시화 모델 구축장치 개발 및 성능평가 (Development and Evaluation of System for 3D Visualization Model of Biological Objects)

  • 황헌;최태현;김철수;이수희
    • Journal of Biosystems Engineering
    • /
    • 제26권6호
    • /
    • pp.545-552
    • /
    • 2001
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct a biological object to obtain interior and exterior informations, 3D image visualization model from a series of sliced sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D visualization system is presented. The system is composed of three modules. The first module is the handling and image acquisition module. The handling module feeds and slices a cylindrical shape paraffin, which holds a biological object inside the paraffin. And the paraffin is kept being solid by cooling while being handled. The image acquisition modulo captures the sectional image of the object merged into the paraffin consecutively. The second one is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last one is the image processing and visualization module, which processes a series of acquired sectional images and generates a 3D volumetric model. To verify the condition for the uniform slicing, normal directional forces of the cutting edge according to the various cutting angles were measured using a strain gauge and the amount of the sliced chips were weighed and analyzed. Once the 3D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, and scaling including arbitrary sectional view.

  • PDF

Segmental Analysis Trial of Volumetric Modulated Arc Therapy for Quality Assurance of Linear Accelerator

  • Rahman, Mohammad Mahfujur;Kim, Chan Hyeong;Huh, Hyun Do;Kim, Seonghoon
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.128-138
    • /
    • 2019
  • Purpose: Segmental analysis of volumetric modulated arc therapy (VMAT) is not clinically used for compositional error source evaluation. Instead, dose verification is routinely used for plan-specific quality assurance (QA). While this approach identifies the resultant error, it does not specify which machine parameter was responsible for the error. In this research study, we adopted an approach for the segmental analysis of VMAT as a part of machine QA of linear accelerator (LINAC). Methods: Two portal dose QA plans were generated for VMAT QA: a) for full arc and b) for the arc, which was segmented in 12 subsegments. We investigated the multileaf collimator (MLC) position and dosimetric accuracy in the full and segmented arc delivery schemes. A MATLAB program was used to calculate the MLC position error from the data in the dynalog file. The Gamma passing rate (GPR) and the measured to planned dose difference (DD) in each pixel of the electronic portal imaging device was the measurement for dosimetric accuracy. The eclipse treatment planning system and a MATLAB program were used to calculate the dosimetric accuracy. Results: The maximum root-mean-square error of the MLC positions were <1 mm. The GPR was within the range of 98%-99.7% and was similar in both types of VMAT delivery. In general, the DD was <5 calibration units in both full arcs. A similar DD distribution was found for continuous arc and segmented arcs sums. Exceedingly high DD were not observed in any of the arc segment delivery schemes. The LINAC performance was acceptable regarding the execution of the VMAT QA plan. Conclusions: The segmental analysis proposed in this study is expected to be useful for the prediction of the delivery of the VMAT in relation to the gantry angle. We thus recommend the use of segmental analysis of VMAT as part of the regular QA.

강박장애 환자에서의 안와전두피질 용적의 2년 추적 연구 (2 Year Follow-Up Study of Orbitofrontal Cortex Volume in Obsessive Compulsive Disorder)

  • 김성년;강도형;유소영;노규식;장준환;최정석;하태현;권준수
    • 대한불안의학회지
    • /
    • 제2권2호
    • /
    • pp.94-100
    • /
    • 2006
  • Objective : This study was designed to examine the volumetric abnormality of orbitofrontal cortex (OFC) and its change after 2 years of pharmacotherapy in obsessive compulsive disorder (OCD) patients. Method : Volumetric magnetic resonance imaging studies were conducted in 15 OCD patients and 13 normal volunteers. For 2 years, all patients took at least one serotonin reuptake inhibitor and atypical antipsychotics were used as an augmentation therapy in most patients. The follow-up MRI studies were conducted after the pharmacotherapy and OFC volumes were measured by the manual region of interest method. Results : Bilateral OFC volumes of 15 OCD patients were significantly greater than those of the normal volunteers before the treatment. After 2 years of the treatment, significant decrease was observed in bilateral OFC volumes of OCD patients to the extent that left OFC volume of OCD patients was not different from that of the normal volunteers. Conclusion : This finding suggests that OFC is directly related to the pathophysiology of obsessive compulsive disorder.

  • PDF