• 제목/요약/키워드: Volumetric imaging

검색결과 125건 처리시간 0.031초

Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

  • Kang, Sung-Won;Lee, Woo-Jin;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • 제45권1호
    • /
    • pp.7-13
    • /
    • 2015
  • Purpose: We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods: The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results: VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion: It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

Discrepancies in Dose-volume Histograms Generated from Different Treatment Planning Systems

  • Kim, Jung-in;Han, Ji Hye;Choi, Chang Heon;An, Hyun Joon;Wu, Hong-Gyun;Park, Jong Min
    • Journal of Radiation Protection and Research
    • /
    • 제43권2호
    • /
    • pp.59-65
    • /
    • 2018
  • Background: We analyzed changes in the doses, structure volumes, and dose-volume histograms (DVHs) when data were transferred from one commercial treatment planning system (TPS) to another commercial TPS. Materials and Methods: A total of 22 volumetric modulated arc therapy (VMAT) plans for nasopharyngeal cancer were generated with the Eclipse system using 6-MV photon beams. The computed tomography (CT) images, dose distributions, and structure information, including the planning target volume (PTV) and organs at risk (OARs), were transferred from the Eclipse to the MRIdian system in digital imaging and communications in medicine (DICOM) format. Thereafter, DVHs of the OARs and PTVs were generated in the MRIdian system. The structure volumes, dose distributions, and DVHs were compared between the MRIdian and Eclipse systems. Results and Discussion: The dose differences between the two systems were negligible (average matching ratio for every voxel with a 0.1% dose difference criterion = $100.0{\pm}0.0%$). However, the structure volumes significantly differed between the MRIdian and Eclipse systems (volume differences of $743.21{\pm}461.91%$ for the optic chiasm and $8.98{\pm}1.98%$ for the PTV). Compared to the Eclipse system, the MRIdian system generally overestimated the structure volumes (all, p < 0.001). The DVHs that were plotted using the relative structure volumes exhibited small differences between the MRIdian and Eclipse systems. In contrast, the DVHs that were plotted using the absolute structure volumes showed large differences between the two TPSs. Conclusion: DVH interpretation between two TPSs should be performed using DVHs plotted with the absolute dose and absolute volume, rather than the relative values.

Maximum diameter versus volumetric assessment for the response evaluation of vestibular schwannomas receiving stereotactic radiotherapy

  • Choi, Youngmin;Kim, Sungmin;Kwak, Dong-Won;Lee, Hyung-Sik;Kang, Myung-Koo;Lee, Dong-Kun;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • 제36권2호
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: To explore the feasibility of maximum diameter as a response assessment method for vestibular schwannomas (VS) after stereotactic radiosurgery or fractionated stereotactic radiotherapy (RT), we analyzed the concordance of RT responses between maximum diameters and volumetric measurements. Materials and Methods: Forty-two patients receiving curative stereotactic radiosurgery or fractionated stereotactic RT for VS were analyzed retrospectively. Twelve patients were excluded: 4 did not receive follow-up magnetic resonance imaging (MRI) scans and 8 had initial MRI scans with a slice thickness >3 mm. The maximum diameter, tumor volume (TV), and enhanced tumor volume (ETV) were measured in each MRI study. The percent change after RT was evaluated according to the measurement methods and their concordances were calculated with the Pearson correlation. The response classifications were determined by the assessment modalities, and their agreement was analyzed with Cohen kappa statistics. Results: Median follow-up was 31.0 months (range, 3.5 to 86.5 months), and 90 follow-up MRI studies were analyzed. The percent change of maximum diameter correlated strongly with TV and ETV (r(p) = 0.85, 0.63, p = 0.000, respectively). Concordance of responses between the Response Evaluation Criteria in Solid Tumors (RECIST) using the maximum diameters and either TV or ETV were moderate (kappa = 0.58; 95% confidence interval, 0.32-0.85) or fair (kappa = 0.32; 95% confidence interval, 0.05-0.59), respectively. Conclusions: The percent changes in maximum diameter and the responses in RECIST were significantly concordant with those in the volumetric measurements. Therefore, the maximum diameters can be used for the response evaluation of VS following stereotactic RT.

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.

깁스분포와 라인모델을 이용한 3차원 자기공명영상의 분류 (Classification of a Volumetric MRI Using Gibbs Distributions and a Line Model)

  • Junchul Chun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제2권1호
    • /
    • pp.58-66
    • /
    • 1998
  • 목적: 본 논문은 마코브 랜덤필드(Markov Random Field)와 깁스 랜덤필드(Gibbs Random Field) 및 라인모델(LIne Model)에 기반한 3차원 자기공명영상의 분류 방법을 소개하고자 하였다. 대상 및 방법 : 통계적으로 이질적 성분들로 구성된 영상을 대상으로한 깁스분류 결과는 영상내의 국소적으로 정적인 영역들을 이웃화소 시스템 내에서 정의되는 상호작용 인자(inetraction parameter)의 메커니즘에 의해 분리하\ulcorner로서 개선시킬 수 있다. 이를 위하여 영상에서 라인모델의 생성을 고려할 수 있으며, 본 논문에서는 영상의 미분방법에 근거한 다중신호영상을 위한 라인모델을 구축하였다. 라인모델은 서로 상이한 통게적 특성을 갖는 영역사이에 존재하는 관측할 수 없는 라인필드의 존재 유무를 확률 값으로 제공한다. 영상으로부터 획득한 라이모델은 Gibbs 분류기의 에너지함수 값을 결정하는 상호작용 인자 값을 결정하는데 사용된다. 결과 : 3차원 자기공명영상의 분류를 위한 MRS-Gibbs 분류기는 영상분류의 도메인이 일반적인 이차원 영상의 $E^{2}$ 공간에서 $E^{3}$ 공간으로 확장되었다. 개발된 깁스분류기를 이용한 자기공명여상의 분류결과 기존의 context free 분류방법에 의한 결과에 비하여 특히 동일성질을 갖고 있는 영역 및 경계부분 등의 분류결과가 우수함을 알 수 있었다. 결론 : 본 논문에서는 다중 신호, 3차원 자기공명영상을 위한 라인모델을 구축하고 그로부터 MRF-Gibbs분류기의 에너지함수를 결정하기 위한 상호작용 인자를 유도하였다.

  • PDF

Magnetic Resonance Imaging-Based Volumetric Analysis and Its Relationship to Actual Breast Weight

  • Yoo, Anna;Minn, Kyung Won;Jin, Ung Sik
    • Archives of Plastic Surgery
    • /
    • 제40권3호
    • /
    • pp.203-208
    • /
    • 2013
  • Background Preoperative volume assessment is useful in breast reconstruction. Magnetic resonance imaging (MRI) and mammography are commonly available to reconstructive surgeons in the care of a patient with breast cancer. This study aimed to verify the accuracy of breast volume measured by MRI, and to identify any factor affecting the relationship between measured breast volume and actual breast weight to derive a new model for accurate breast volume estimation. Methods From January 2012 to January 2013, a retrospective review was performed on a total of 101 breasts from 99 patients who had undergone total mastectomy. The mastectomy specimen weight was obtained for each breast. Mammographic and MRI data were used to estimate the volume and density. A standard statistical analysis was performed. Results The mean mastectomy specimen weight was 340.8 g (range, 95 to 795 g). The mean MRI-estimated volume was $322.2mL^3$. When divided into three groups by the "difference percentage value", the underestimated group showed a significantly higher fibroglandular volume, higher percent density, and included significantly more Breast Imaging, Reporting and Data System mammographic density grade 4 breasts than the other groups. We derived a new model considering both fibroglandular tissue volume and fat tissue volume for accurate breast volume estimation. Conclusions MRI-based breast volume assessment showed a significant correlation with actual breast weight; however, in the case of dense breasts, the reconstructive surgeon should note that the mastectomy specimen weight tends to overestimate the volume. We suggested a new model for accurate breast volume assessment considering fibroglandular and fat tissue volume.

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.

Body Height Effect on Brain Volumes in Youth Decreases in Old Age in Koreans

  • Koh, In-Song
    • Interdisciplinary Bio Central
    • /
    • 제3권3호
    • /
    • pp.11.1-11.5
    • /
    • 2011
  • The MRI (magnetic resonance imaging) volumetric analysis of the brain was performed in 59 healthy elderly Koreans (aged 62-76 years; 34 male, 25 female) to investigate whether the previously reported significant correlations between body height and brain volumes in the young aged Koreans (20's) still exist in the old aged Koreans (60's and 70's). Unlike previously reported significant correlations in the young aged Koreans, neither the correlation between whole brain volume and body height in male nor the correlation between cerebellar volume and body height in female show any significance in the old aged Koreans. The significant correlation between body height and whole brain volume was still observed when both male and female data were combined (r=0.27, P<0.05), but the correlation coef-ficient and the level of significance markedly decreased from those of previously reported Korean youth data (r=0.67, P<0.01). Simple linear regression analysis shows decrease of explanatory power of height (measured in $r^2$) from 44% in the youth group to 7% in the old age group on the variance of whole brain volume. Multiple linear regression analysis shows that age and sex, rather than height, are major explanatory variables for whole brain volume in the old aged Koreans. The loss of correlations in the aged group is suspected to be mainly due to age related brain volume changes.

Temporal bone CT 검사 시 conventional scan 방식과 helical scan방식에 따른 선량 비교분석 (Dose Comparison Analysis of Temporal bone CT scan to conventional scan method during helical scan method)

  • 강수홍;박용성;이래곤;황선광
    • 대한디지털의료영상학회논문지
    • /
    • 제17권1호
    • /
    • pp.49-56
    • /
    • 2015
  • Temporal bone CT scan side skull fracture. In addition to the confirmation of the ossicles, such as fractures and dislocations, temporomandibular facial fractures, deformities surgery helps to establish a science plan. Cochlear implant surgery has been performed in the state before and after identifying purposes. Test methods are being implemented by the Conventional direct axial and Direct coronal scan, the basic method of Temporal bone CT. Helical scan is a fast Volumetric data obtained compared with the Conventional scan, the patient reduced the dose, and there are some advantages, such as reduced Beam hardening streak artifacts caused by dental fillings. This study is a comparative analysis by dose reduction for patients with a dose according to the conventional scan method and then effective from 2015 by helical scan method performed in 2014 through the retrospective survey, which was then optimized for the purpose of inspection.

  • PDF

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.