• Title/Summary/Keyword: Volume-PTV

Search Result 189, Processing Time 0.022 seconds

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF

Evaluation of usefulness of the Gated Cone-beam CT in Respiratory Gated SBRT (호흡동조 정위체부방사선치료에서 Gated Cone-beam CT의 유용성 평가)

  • Hong sung yun;Lee chung hwan;Park je wan;Song heung kwon;Yoon in ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.61-72
    • /
    • 2022
  • Purpose: Conventional CBCT(Cone-beam Computed-tomography) caused an error in the target volume due to organ movement in the area affected by respiratory movement. The purpose of this paper is to evaluate the usefulness of accuracy and time spent using the Gated CBCT function, which reduces errors when performing RGRT(respiratory gated radiation therapy), and to examine the appropriateness of phase. Materials and methods: To evaluate the usefulness of Gated CBCT, the QUASARTM respiratory motion phantom was used in the Truebeam STxTM. Using lead marker inserts, Gated CBCT was scaned 5 times for every 20~80% phase, 30~70% phase, and 40~60% phase to measure the blurring length of the lead marker, and the distance the lead marker moves from the top phase to the end of the phase was measured 5 times. Using Cedar Solid Tumor Inserts, 4DCT was scanned for every phase, 20-80%, 30-70%, and 40-60%, and the target volume was contoured and the length was measured five times in the axial direction (S-I direction). Result: In Gated CBCT scaned using lead marker inserts, the axial moving distance of the lead marker on average was measured to be 4.46cm in the full phase, 3.11cm in the 20-80% phase, 1.94cm in the 30-70% phase, 0.90cm in the 40-60% phase. In Fluoroscopy, the axial moving distance of the lead marker on average was 4.38cm and the distance on average from the top phase to the beam off phase was 3.342cm in the 20-80% phase, 3.342cm in the 30-70% phase, and 0.84cm in the 40-60% phase. Comparing the results, the difference in the full phase was 0.08cm, the 20~80% phase was 0.23cm, the 30~70% phase was 0.10cm, and the 40~60% phase was 0.07cm. The axial lengths of ITV(Internal Target Volume) and PTV(Planning Target Volume) contoured by 4DCT taken using cedar solid tumor inserts were measured to be 6.40cm and 7.40cm in the full phase, 4.96cm and 5.96cm in the 20~80% phase, 4.42cm and 5.42cm in the 30~70% phase, and 2.95cm and 3.95cm in the 40~60% phase. In the Gated CBCT, the axial lengths on average was measured to be 6.35 cm in the full phase, 5.25 cm in the 20-80% phase, 4.04 cm in the 30-70% phase, and 3.08 cm in the 40-60% phase. Comparing the results, it was confirmed that the error was within ±8.5% of ITV Conclusion: Conventional CBCT had a problem that errors occurred due to organ movement in areas affected by respiratory movement, but through this study, obtained an image similar to the target volume of the setting phase using Gated CBCT and verified its usefulness. However, as the setting phase decreases, the scan time was increases. Therefore, considering the scan time and the error in setting phase, It is recommended to apply it to patients with respiratory coordinated stereotactic radiation therapy using a wide phase of 30-70% or more.

First Clinical Experience about RapidArc Treatment with Prostate Cancer in Ajou University Hospital (아주대학교병원에서의 전립선암에 대한 래피드아크 치료)

  • Park, Hae-Jin;Kim, Mi-Hwa;Chun, Mi-Son;Oh, Young-Teak;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • In this study, the patient with localized prostate cancer who had previously been treated at Ajou University Hospital was randomly selected since March, 2009. we performed IMRT and 2RA plans and the same dose objectives were used for CTVs, PTVs, rectum, bladder, and femoral head of the respective plans. Arc optimizations and dose calculations were performed using Eclipse versions 8.6. In this paper, we evaluated the performance of IMRT and RA plans to investigate the clinical effect of RA for prostate cancer case. In our comparison of treatment techniques, RA was found to be superior to IMRT being better dose conformity of target volume. As for the rectum and bladder, RA was better than IMRT at decreasing the volume irradiated. RA has the ability to avoid critical organs selectively through applied same dose constraints while maximally treating the target dose. Therefore, this result suggests that there should be less rectal toxicity with RA compared with IMRT, with no compromise in tumor margin. These findings, which show more favorable rectal, bladder, and femoral head DVHs with RA, imply that should not result in excess risk of toxicity when this technique is used. Many experiences with RA have shown not only dosimetric advantage, but also improved clinical toxicity when comparing with IMRT. The main drawbacks of RA are the more complex and time-consuming treatment planning process and the need for more exact physics quality assurance (QA).

Spinal Cord Partial Block Technique Using Dynamic MLC (동적 다엽콜리메이터를 이용한 척수의 부분 차폐 기법)

  • 조삼주;이병용;이상욱;안승도;김종훈;권수일;최은경
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck or the thorax region. It is not an easy task to maintain the spinal cord dose below tolerance and to keep the clinically acceptable dose to the PTV in this region. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. This technique is an extension of the conventional treatment planning. In the beginning the beam directions are selected as same as the conventional treatment planning to encompass the PTV, then the partial block are designed to shield the spinal cord. The plan comparisons between the conventional therapy plan and the PTB plan were performed to evaluate the validity of this technique. The mean dose and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan generated better results than the conventional treatment plan and it was proved to be useful for the H&N region.

  • PDF

Adjuvant Radiotherapy after Breast Conserving Treatment for Breast Cancer:A Dosimetric Comparison between Volumetric Modulated Arc Therapy and Intensity Modulated Radiotherapy

  • Liu, Zhe-Ming;Ge, Xiao-Lin;Chen, Jia-Yan;Wang, Pei-Pei;Zhang, Chi;Yang, Xi;Zhu, Hong-Cheng;Liu, Jia;Qin, Qin;Xu, Li-Ping;Lu, Jing;Zhan, Liang-Liang;Cheng, Hong-Yan;Sun, Xin-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3257-3265
    • /
    • 2015
  • Background: Radiotherapy is an important treatment of choice for breast cancer patients after breast-conserving surgery, and we compare the feasibility of using dual arc volumetric modulated arc therapy (VMAT2), single arc volumetric modulated arc therapy (VMAT1) and Multi-beam Intensity Modulated Radiotherapy (M-IMRT) on patients after breast-conserving surgery. Materials and Methods: Thirty patients with breast cancer (half right-sided and half left-sided) treated by conservative lumpectomy and requiring whole breast radiotherapy with tumor bed boost were planned with three different radiotherapy techniques: 1) VMAT1; 2) VMAT2; 3) M-IMRT. The distributions for the planning target volume (PTV) and organs at risk (OARs) were compared. Dosimetries for all the techniques were compared. Results: All three techniques satisfied the dose constraint well. VMAT2 showed no obvious difference in the homogeneity index (HI) and conformity index (CI) of the PTV with respect to M-IMRT and VMAT1. VMAT2 clearly improved the treatment efficiency and can also decrease the mean dose and V5Gy of the contralateral lung. The mean dose and maximum dose of the spinal cord and contralateral breast were lower for VMAT2 than the other two techniques. The very low dose distribution (V1Gy) of the contralateral breast also showed great reduction in VMAT2 compared with the other two techniques. For the ipsilateral lung of right-sided breast cancer, the mean dose was decreased significantly in VMAT2 compared with VMAT1 and M-IMRT. The V20Gy and V30Gy of the ipsilateral lung of the left-sided breast cancer for VMAT2 showed obvious reduction compared with the other two techniques. The heart statistics of VMAT2 also decreased considerably compared to VMAT1 and M-IMRT. Conclusions: Compared to the other two techniques, the dual arc volumetric modulated arc therapy technique reduced radiation dose exposure to the organs at risk and maintained a reasonable target dose distribution.

Simultaneous Determination of Pesticides in Water Using a GC/MS Coupled with Micro Extraction by Packed Sorbent (MEPS-GC/MS를 이용한 농약류 동시 수질분석)

  • Lee, Ki-chang;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.262-268
    • /
    • 2015
  • This study established an analytical method to simultaneously determine six organophosphorous pesticides [methyldemetone-S, diazinon, fenitrothion, parathion, phentoate, and O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN)] and carbaryl in water using a gas chromatography/mass spectrometry (GC/MS) system coupled with on-line micro extraction by packed sorbent (MEPS) and programmed temperature vaporizer (PTV) injector. Polystyrene divinylbenzene (PDVB) was used as a sorbent of MEPS. The effects of elution solvents, pH, elution volume and draw-eject cycles of samples on sample pretreatment process were investigated. Also, quality assurance and quality control (QA/QC) and the recovery of the pesticides in environmental samples were evaluated. The elution was performed using $30{\mu}L$ of a mixed solvent (acetone : dichloromethane = 80 : 20 (v/v)). Sample pretreatment processes were optimized with seven cycles of draw-eject of sample (1 mL) spiking an internal standard and sulfuric acid. At lower pH, the analytical sensitivity of diazinon decreased, but that of carbaryl increased. The method detection limit and the limit of quantification for this method were 0.02~0.18 and $0.08{\sim}0.59{\mu}g/L$, respectively. The method precision and accuracy were 1.5~11.5% and 83.3~129.8%, respectively, at concentrations of $0.5{\sim}5.0{\mu}g/L$. The recovery rates for all the pesticides except carbaryl in various environmental samples ranged 75.7~129.3%. The recovery rate of carbaryl in effluent sample was over 200% whereas carbaryl in drinking water, groundwater, and river water were in the acceptable range.

The Effect of MLC Leaf Motion Constraints on Plan Quality and Delivery Accuracy in VMAT (체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Lee, Jeong-woo;Shin, Young-Joo;Kang, Dong-Jin;Jung, Jae-Yong
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to evaluate the dose distribution by gantry rotation and MLC moving speed on treatment planning system(TPS) and linear accelerator. The dose analyzer phantom(Delta 4) was scanned by CT simulator for treatment planning. The planning target volumes(PTVs) of prostate and pancreas was prescribed 6,500 cGy, 5,000 cGy on VMAT(Volumetric Modulated Arc Therapy) by TPS while MLC speed changed. The analyzer phantom was irradiated linear accelerator using by planned parameters. Dose distribution of PTVs were evaluated by the homogeneity index, conformity index, dose volume histogram of organ at risk(rectum, bladder, spinal cord, kidney). And irradiated dose analysis were evaluated dose distribution and conformity by gamma index. The PTV dose of pancreas was 4,993 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(5,000 cGy). The dose of spinal cord, left kidney, and right kidney were accessed the lowest during 0.1 cm/deg, 1.5 cm/deg, 0.3 cm/deg. The PTV dose of prostate was 6,466 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(6,500 cGy). The dose of bladder and rectum were accessed the lowest during 0.3 cm/deg, 2.0 cm/deg. For gamma index, pancreas and prostate were analyzed the lowest error 100% at 0.8, 1.0 cm/deg and 99.6% at 0.3, 0.5 cm/deg. We should used the optimal leaf speed according to the gantry rotation if the treatment cases are performed VMAT.

Evaluation of Dose Distributions Recalculated with Per-field Measurement Data under the Condition of Respiratory Motion during IMRT for Liver Cancer (간암 환자의 세기조절방사선치료 시 호흡에 의한 움직임 조건에서 측정된 조사면 별 선량결과를 기반으로 재계산한 체내 선량분포 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.79-88
    • /
    • 2014
  • The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array. Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Because the Gate-IMRT method also has disadvantages such as unsuspected dosimetric variations when applying the gating system and an increased treatment time, it is better to perform a prior analysis of the patient's respiratory condition and the importance and fulfillment of the IMRT plan dose constraints in order to select an optimal IMRT method with which to correct the respiratory organ motional effect.

Evaluation of surface dose comparison by treatment equipment (치료 장비 별 표면 선량 비교평가)

  • Choi Eun Ha;Yoon Bo Reum;Park Byoung Suk;An Ye Chan;Park Myoung Hwan;Park Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.31-42
    • /
    • 2022
  • Purpose: This study measures and compares the surface dose values in the virtual target volume using Tomotherapy, Halcyon, and TrueBeam equipment using 6MV-Flattening Filter-Free(FFF) energy. Materials and Methods: CT scan was performed under three conditions of without bolus, 0.5 cm bolus, and 1 cm bolus using an IMRT phantom (IBA, Germany). The Planning Target Volume (PTV) was set at the virtual target depth, and the treatment plan was established at 200 cGy at a time. For surface dosimetry, the Gafchromic EBT3 film was placed in the same section as the treatment planning system and repeated measurements were performed 10 times and then analyzed. Result: As a result of measuring the surface dose for each equipment, without, 0.5 cm, 1 cm bolus is in this order, and the result of Tomotherapy is 115.2±2.0 cGy, 194.4±3.3 cGy, 200.7±2.9 cGy, The result in Halcyon was 104.7±3.0 cGy, 180.1±10.8 cGy, 187.0±10.1 cGy, and the result in TrueBeam was 92.4±3.2 cGy, 148.6±5.7 cGy, 155.8±6.1 cGy, In all three conditions, the same as the treatment planning system, Tomotherapy, Halcyon, TreuBeam was measured highly in that order. Conclusion: Higher surface doses were measured in Tomotherapy and Halcyon compared to TrueBeam equipment. If the characteristics of each equipment are considered according to the treatment site and treatment purpose, it is expected that the treatment efficiency of the patient will increase as well as the treatment satisfaction of the patient.

Study of the Optimize Radiotherapy Treatment Planning (RTP) Techniques in Patients with Early Breast Cancer; Inter-comparison of 2D and 3D (3DCRT, IMRT) Delivery Techniques (유방암 방사선치료 시 최적의 방사선치료계획기법에 대한 고찰)

  • Kim, Young-Bum;Lee, Sang-Rok;Chung, Se-Young;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Purpose: A various find of radiotherapy treatment plans have been made to determine appropriate doses for breasts, chest walls and loco-regional lymphatics in the radiotherapy of breast cancers. The aim of this study was to evaluate the optimum radiotherapy plan technique method by analyzing dose distributions qualitatively and quantitatively. Materials and Methods: To evaluate the optimum breast cancer radiotherapy plan technique, the traditional method(two dimensional method) and computed tomography image are adopted to get breast volume, and they are compared with the three-dimensional conformal radiography (3DCRT) and the intensity modulated radiotherapy (IMRT). For this, the regions of interest (ROI) such as breasts, chest walls, loco-regional lymphatics and lungs were marked on the humanoid phantom, and the computed tomography(Volume, Siemens, USA) was conducted. Using the computed tomography image obtained, radiotherapy treatment plans (XiO 5.2.1, FOCUS, USA) were made and compared with the traditional methods by applying 3DCRT and IMRT. The comparison and analysis were made by analyzing and conducting radiation dose distribution and dose-volume histogram (DVH) based upon radiotherapy techniques (2D, 3DCRT, IMRT) and point doses for the regions of interest. Again, treatment efficiency was evaluated based upon time-labor. Results: It was found that the case of using 3DCRT plan techniques by getting breast volume is more useful than the traditional methods in terms of tumor delineation, beam direction and confirmation of field boundary. Conclusion: It was possible to present the optimum radiotherapy plan techniques through qualitative and quantitative analyses based upon radiotherapy plan techniques in case of breast cancer radiotherapy. However, further studies are required for the problems with patient setup reproducibility arising from the difficulties of planning target volume (PVT) and breast immobilization in case of three-dimensional radiotherapy planning.

  • PDF