• Title/Summary/Keyword: Volume source

Search Result 997, Processing Time 0.03 seconds

Limiting Nutrient on Phytoplankton Growth in Gwangyang Bay (광양만에서 식물플랑크톤증식의 제한영양염)

  • Lee, Jae-Seong;Jung, Rae-Hong;Kim, Soung-Soo;Go, Woo-Jin;Kim, Kui-Young;Park, Jong-Soo;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.201-210
    • /
    • 2001
  • Salinity, DIN, DIP, DIN/DIP and indigenous algal assay were determined to estimate the limiting nutrient for phytoplankton growth in Gwangyang Bay, South Sea of Korea. Seawater samples were collected at surface and bot-tom water in 4 November 1999 (dry season) and 2 September 2000 (after heavy rain). In 4 November 1999, the salinity, DIN, DIP and DIN/DIP were 29.92 psu, 13.59 ${\mu}M$, 3.41 ${\mu}M$ and 4.14 respectively. In 2 September 2000, These values were 24.62 psu, 27.77 ${\mu}M$, 2.82 ${\mu}M$ and 9.79 respectively. The DIN and DIP concentrations in this study were higher than Deukryang, Yeoja and Gamak Bay, South Sea of Korea. Especially, DIP concentration was 8 times high compared to Deutryang, Yeoja and Gamak Bay. The main sources of nitrogen seem to be freshwater runoff from Somjin River and industrial wastewater. But, the main sources of phosphorus seem to be industrial wastewater around Gwangyang Bay. The limiting nutrient was nitrogen at all station in 4 November 1999. The limiting nutrient was also nitrogen in 2 September 2000 in spite of heavy rain observed because of relatively much volume of phosphorus sup-plied from point sources than nitrogen. In case of below 20 psu in salinity by heavy rain, the limiting nutrient willbe shift from nitrogen to phosphorus at some area of Somjin River estuary. But the limiting nutrient will be never shift to phosphorus throughout Gwangyang Bay, eastern coast of Yeoja and Dolsan because of much volume of phosphorus runoff from point source in coastal area of Gwangyang Bay.

  • PDF

Effects of Embryo Sources and Culture Systems on the Membrane Permeability and Viability of Bovine Blastocysts Cryopreserved by GMP Vitrification (소 수정란의 생산체계가 세포막 투과력 및 GMP Vitrification 동결융해 후 생존성에 미치는 영향)

  • Kong, I.K.;Cho, S.G.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.2
    • /
    • pp.191-198
    • /
    • 2001
  • The purpose of this study was to investigate the effects of embryo sources such as in vivo vs. in vitro produced blastocyst, and culture systems on the membrane permeability and viability of bovine blastocyst following GMP vitrification. To produce in vivo embryos, six cows were superovulated by administration of follicle stimulation hormone (FSH) and prostaglandin $F_{2{\alpha}}$(PG $F_{2{\alpha}}$). in vitro embryos were produced by two different culture systems, oviduct co-culture (OCS) and defined culture system (HECM-6; DCS). Ovaries were picked up at a local slaughterhouse and transported to laboratory in 3$0^{\circ}C$ saline within 2 h. Ovaries were washed with same saline three times and then placed in saline on warm plate adjusted at 3$0^{\circ}C$ during aspiration. The blastocysts produced were assigned for membrane permeability and viability following GMP vitrification. The membrane permeability of blastocysts was checked in 0.5 M sucrose solution on warm plate at 35$^{\circ}C$ for 0, 2, 5 and 7 min, respectively. Then the diameters (width and length) of embryo cytoplasms were measured by a eyepiece meter, and they were converted to their volume by 4/3 $\pi$ $r^3$. The blastocysts were cryopreserved by GMP vitrification method, where they were sequentially placed into vitrification solution before being loaded into GMP vessels and immersed into L$N_2$ within 20 to 25 sec. Post-thaw blastocysts were serially washed in 0.25 and 0.15 M sucrose in HM and TCM-199 for 5 min each, and then cultured in TCM 199 supplemented with 10% FCS for 24 or 48 h. The volume change of in vivo blastocyst at 0, 2, 5 and 7 min (100, 37.1, 34.3 and 31.6%) was significantly more shrunk than those of in vitro blastocysts derived from OCS (100, 59.8, 48.9, 47.9%) and DCS (100, 57.2, 47.3 and 46.9%) (P<0.05). The viability of post-thaw blastocyst derived from in vivo (93.6%) was also significantly different from those in OCS and DCS (81.9 and 83.6%; P<0.05). In the present culture system, the morphology of embryos produced in vitro was similar to that of in vivo embryos, but the quality in membrane permeability and post-thaw viability showed a big difference from their sources as in vivo or in vitro derived from OCS and DCS. The results indicated that the quality of in vivo embryos in membrane permeability and post-thaw viability was better than those of in vitro embryos derived from OCS or DCS.

  • PDF

Dosimetric Verifications of the Output Factors in the Small Field Less Than $3cm^2$ Using the Gafchromic EBT2 Films and the Various Detectors (Gafchromic EBT2필름과 다양한 검출기를 이용하여 $3cm^2$ 이하의 소조사면에서 출력비율의 선량검증)

  • Oh, Se An;Yea, Ji Woon;Lee, Rena;Park, Heon Bo;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.218-224
    • /
    • 2014
  • The small field dosimetry is very important in modern radiotherapy because it has been frequently used to treat the tumor with high dose hypo-fractionated radiotherapy or high dose single fraction stereotactic radiosurgery (SRS) with small size target. But, the dosimetry of a small field (< $3{\times}3cm^2$) has been great challenges in radiotherapy. Small field dosimetry is difficult because of (a) a lack of lateral electronic equilibrium, (b) steep dose gradients, and (c) partial blocking of the source. The objectives of this study were to measure and verify with the various detectors the output factors in a small field (<3 cm) for the 6 MV photon beams. Output factors were measured using the CC13, CC01, EDGE detector, thermoluminescence dosimeters (TLDs), and Gafchromic EBT2 films at the sizes of field such as $0.5{\times}0.5$, $1{\times}1$, $2{\times}2$, $3{\times}3$, $5{\times}5$, and $10{\times}10cm^2$. The differences in the output factors with the various detectors increased with decreasing field size. Our study demonstrates that the dosimetry for a small photon beam (< $3{\times}3cm^2$) should use CC01 or EDGE detectors with a small active volume. And also, Output factors with the EDGE detectors in a small field (< $3{\times}3cm^2$) coincided well with the Gafchromic EBT2 films.

Rectal Complication Following Radical Radiotherapy in Carcinoma of the Uterine Cervix (자궁경부암에서 근치적 방사선치료 후의 직장 합병증)

  • Kim Won-Dong;Park Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.44-50
    • /
    • 2006
  • Puroose: This study evaluated the late rectal complications in cervix cancer patients following treatment with external beam radiotherapy (EBRT) and high dose rate intracavitary radiation (HDR ICR). The factors affecting the risk of developing late rectal complications and its incidence were analyzed and discussed. Materials and Methods: The records of 105 patients with cervix cancer who were treated with radical radiotherapy using HDR ICR between July, 1995 and December, 2001 were retrospectively reviewed. The median dose of EBRT was 50.4Gy $(41.4{\sim}56.4 Gy)$ with a daily fraction size of 1.8Gy. A total of $5{\sim}7$ (median: 6) fractions of HDR ICR were given twice weekly with a fraction size of $4{\sim}5 Gy$ (median: 4Gy) to A point using an Ir (Iridium)-192 source. The median dose of ICR was 24 Gy $(20{\sim}35 Gy)$. During HDR ICR, the rectal dose was measured in vivo by a semiconductor dosimeter. The median follow-up period was 32 months, ranging from 5 to 84 months. Results: Of the 105 patients, 12 patients (11%) developed late rectal complications: 7 patients with grade 1 or 2, 4 patients with grade 3 and 1 patient with grade 4. Rectal bleeding was the most frequent chief complaint. The complications usually began to occur $5{\sim}32$ (median: 12) months after the completion of radiotherapy. Multivariate analysis revealed that the measured cumulative rectal BED over 115 Gy3 (Deq over 69 Gy) and the depth (D) of a 5 Gy isodose volume more than 50 mm were the independent predictors for late rectal complications. Conclusion: With evaluating the cumulative rectal BED and the depth of a 5 Gy isodose volume as predictors, we can individualize treatment planning to reduce the probability of late rectal complications.

A Study of a Non-commercial 3D Planning System, Plunc for Clinical Applicability (비 상업용 3차원 치료계획시스템인 Plunc의 임상적용 가능성에 대한 연구)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.71-79
    • /
    • 1998
  • Purpose : The objective of this study is to introduce our installation of a non-commercial 3D Planning system, Plunc and confirm it's clinical applicability in various treatment situations. Materials and Methods : We obtained source codes of Plunc, offered by University of North Carolina and installed them on a Pentium Pro 200MHz (128MB RAM, Millenium VGA) with Linux operating system. To examine accuracy of dose distributions calculated by Plunc, we input beam data of 6MV Photon of our linear accelerator(Siemens MXE 6740) including tissue-maximum ratio, scatter-maximum ratio, attenuation coefficients and shapes of wedge filters. After then, we compared values of dose distributions(Percent depth dose; PDD, dose profiles with and without wedge filters, oblique incident beam, and dose distributions under air-gap) calculated by Plunc with measured values. Results : Plunc operated in almost real time except spending about 10 seconds in full volume dose distribution and dose-volume histogram(DVH) on the PC described above. As compared with measurements for irradiations of 90-cm 550 and 10-cm depth isocenter, the PDD curves calculated by Plunc did not exceed $1\%$ of inaccuracies except buildup region. For dose profiles with and without wedge filter, the calculated ones are accurate within $2\%$ except low-dose region outside irradiations where Plunc showed $5\%$ of dose reduction. For the oblique incident beam, it showed a good agreement except low dose region below $30\%$ of isocenter dose. In the case of dose distribution under air-gap, there was $5\%$ errors of the central-axis dose. Conclusion : By comparing photon dose calculations using the Plunc with measurements, we confirmed that Plunc showed acceptable accuracies about $2-5\%$ in typical treatment situations which was comparable to commercial planning systems using correction-based a1gorithms. Plunc does not have a function for electron beam planning up to the present. However, it is possible to implement electron dose calculation modules or more accurate photon dose calculation into the Plunc system. Plunc is shown to be useful to clear many limitations of 2D planning systems in clinics where a commercial 3D planning system is not available.

  • PDF

Aggregate of Korea in 2020 (2020년도 국내 골재 수급 분석)

  • Hong, Sei Sun;Lee, Jin Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.581-594
    • /
    • 2021
  • In 2020, about 132 million m3 of aggregate was produced in Korea. Of the total domestic aggregates produced in 2020, about 33.3 % was sand and about 66.7% was gravel. It estimated that of the 132 million m3 of aggregates in Korea in 2020, about 52% was produced by screening crushed aggregate, by 36% by forest aggregate, 3% by land aggregate, 5.6% by sea aggregate and 2.5% by washing each other, and 0.4% by river aggregate. This indicates that screening crushed aggregate and forest aggregate are the main producers of domestic aggregates. Leading producing metropolitan cities were Gyeonggi-do, Gyeongsangnam-do, Chungcheongbuk-do, Gangwon-do, Chungcheongnam-do, Incheon in order decreasing volume, which together accounted for about 72.4% of total product. In 2020, aggregates were produced in 153 cities, about 67% of the 231 cities of Korea, 38 local governments have developed aggregates of more than 1 million m3, and the combined production of the 38 cities accounted for about 65% of national total. This means that the aggregate extraction trend of local governments is becoming larger and more concentrated. In 2020, at 153 local governments, a total of 889 operations produced aggregates with 420 operations by permission, 469 operations by declaration. A review of production by size of operation indicated that about 17 million m3 (12.8% of the total aggregate) was produced by 14 operations reporting production of more than 1 million m3. In about 420 operations, the maximum period of permit is 32 years to at least 2 months. When the remaining period of permit is taken into account, only about 55% of active operations can be developed the aggregate after 2021. In order to maintain the permitted aggregate volume by 2020 level, it will be necessary to obtain an extension permit or find new operation sites for at least 200 or more operations.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

Aggregate of Korea in 2022 (2022년 한국의 골재)

  • Sei Sun Hong;Jin Young Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.871-885
    • /
    • 2023
  • In 2022, the total of 129 million m3 of aggregate was produced in Korea, a slightly decrease from the total production of 2021. Of these, about 44 million m3 of sand and about 84 million m3 of gravel were produced. About 41% of total quantity of aggregates were produced by permission and the rest were produced after declaration. It estimated that of the 129 million m3 of aggregates in Korea in 2022, about 54.9% was produced by screening crushed aggregate, by 32.8% by forest aggregate, 2.2% by land aggregate, 6.2% by marine aggregate and 3.1% by washing aggregate, and 0.3% by river aggregate. This indicates that screening crushed and forest aggregate are the main producers of domestic aggregate in 2022. Leading producing metropolitan governments were Gyeonggi-do, Gyeongsangnam-do, Chungcheongnam-do, Incheon, Jeollanam-do, Chungcheongbuk-do, Gangwon-do, Gyeongsangbuk-do in order decreasing volume. In 2022, aggregates were produced in 147 local governments, and the 10 leading producing local governments were, in descending order of volume, Hwaseong, Pocheon, Paju, Ongjin, Youngin, Gwangju, west EEZ, Incheon Seo-gu, Namyangju, Asan. The combined production of the 10 leading local governments accounted for 31% of the national total. And 44 local governments have produced aggregates of more than 1 million m3 each other. In 148 local governments that produced aggregate, a total of 800 active operations produced aggregate with 350 operations by river, land and forest aggregate, 450 operations by selective crushed and washing aggregate.

Influence on Composting of Waste Mushroom Bed from Agaricus bisporus by using Mixed Organic Materials (혼용자재 특성이 양송이 폐상배지를 이용한 퇴비제조에 미치는 영향)

  • Kyung, Ki-Cheon;Lee, Hee-Duk;Jung, Young-Pil;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.335-340
    • /
    • 2010
  • This study was conducted to select organic materials (OM) and nitrogen sources in composting of waste mushroom bed from Agaricus bisporus. We examined physio-chemical properties of the organic materials and the mixture ratio for preparing the wasted mushroom bed (M) compost. The carbon content of sawdust was higher than those of rice straw (R) as OM source and the nitrogen content was high in the order of fowl manure (F)>> pig manure (P)> cow manure (C). The compost was prepared to maintain the criteria of above 25% organic matter and then the change of their ingredients was estimated during the process of fermentation. The temperature of waste mushroom bed+pig manure+rice straw (MRP) treatment was varied fast throughout fermentation, on the other hand the temperature of waste mushroom bed+pig manure+sawdust (MSP) treatment was steadily elevated to the middle of composting. The pH of the compost was somewhat high to pH 8.5~9.0 at the early stage, but decreased to 7.5 at the end stage of composting. The content of OM after fermentation was decreased to the level of 19~21% in rice straw, but the sawdust treatment maintained 25~27% organic matter. The waste mushroom bed+fowl manure+rice straw (MRF) treatment, which contains 26.2% organic matter and 0.68% nitrogen, was the highest among them. The volume of compost was reduced to 50% by using rice straw as organic matter, but reduced to 30% by using the sawdust. The contents of heavy metal in the compost were suitable within the legal criteria. The number of microorganisms were higher in the rice straw than those in the sawdust. It was high in the order of fowl manure> pig manure> cow manure. The major groups consisted of aerobic bacteria, gram negative bacteria and Bacillus sp. and their populations after fermentation were increased to $1{\times}10^1{\sim}1{\times}10^2\;cfu\;g^{-1}$ rather than those before fermentation. Therefore we concluded that the waste mushroom bed+fowl manure+sawdust (MSF 3:9:1 v/v/v) treatment was suitable combination for high organic matter and nitrogen source, and the periods of composting were 50~60 days.

The Study to Re-establish the Amount and Major Pollution Source of Wastewater from Seasonal Swine Farms (양돈농가에서의 계절별 세정수 발생량 및 주요 오염원 재설정 연구)

  • Kwag, J.H.;Choi, D.Y.;Kim, J.H.;Jeong, K.H.;Cho, S.H.;Jeong, M.S.;Kang, H.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.225-230
    • /
    • 2009
  • The purpose of this study was to determine the effect of re-establish the amount and major pollution source of swine wastewater from swine farms. The results obtained in this study was summarized as follow; The quantity of wastewater produced from the average volume of swine wastewater was $2.49{\ell}$/head/day and $2.49{\ell}$ in spring, $2.65{\ell}$ in summer, $2.47{\ell}$ in autumn, and $2.35{\ell}$ in winter. The quantity of wastewater production during summer season was higher than of the other seasons. The water pollutant concentration in wastewater of swine farms, $BOD_5$, SS, T-N and T-P, was $4,689\;mg/{\ell}$, $2,122\;mg/{\ell}$, $3,238\;mg/{\ell}$ and $118\;mg/{\ell}$, respectively.

  • PDF