• 제목/요약/키워드: Volume scattering

검색결과 231건 처리시간 0.023초

Detection of Second-Layer Corrosion in Aging Aircraft

  • Kim, Noh-Yu;Yang, Seun-Yong
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.591-602
    • /
    • 2009
  • The Compton backscatter technique has been applied to lap-joint in aircraft structure in order to determine mass loss due to exfoliative corrosion of the aluminum alloy sheet skin. The mass loss of each layer has been estimated from Compton backscatter A-scan including the aluminum sheet, the corrosion layer, and the sealant. A Compton backscattering imaging system has been also developed to obtain a cross-sectional profile of corroded lap-splices of aging aircraft using a specially designed slit-type camera. The camera is to focus on a small scattering volume inside the material from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the layered structure is scanned by moving the scattering volume through the thickness direction of the specimen. The theoretical model of the Compton scattering based on Boltzmann transport theory is presented for quantitative characterization of exfoliative corrosion through deconvolution procedure using a nonlinear least-square error minimization method. It produces practical information such as location and width of planar corrosion in layered structures of aircraft, which generally cannot be detected by conventional NDE techniques such as the ultrasonic method.

마이크로파 산란계를 이용한 벼, 콩 생육단계 추정 (Estimation of Rice and Soybean Growth Stage Using a Microwave Scatterometer)

  • 김이현;홍석영;이훈열;이재은;이경도
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.503-510
    • /
    • 2012
  • 본 연구에서는 마이크로파 산란계 시스템을 이용하여 벼, 콩 작물을 대상으로 후방산란계수와 작물생육변화를 관측하고 pauli decomposition을 통해 얻어진 인자값과 작물생육과의 비교를 통해 작물 생육단계를 추정하였다. Pauli decomposition 방법을 이용 생육시기에 따른 벼 산란특성을 분석한 결과 L-밴드는 벼 출수기 (DOY 222, 8월 10일) 이후 이중 산란 (${\sigma}_{hh}-{\sigma}_{vv}$) 효과가 크게 나타났고, C-밴드는 생육기간동안 이중 산란과 체적 산란의 decomposition value가 거의 같았으며, X-밴드는 체적 산란이 이중 산란보다 높게 나타났다. Pauli decomposition 방법을 이용하여 콩 생육시기별 산란특성을 분석한 결과 L-밴드에서는 R2 (DOY 224, 8월 13일) 시기에 이중 산란이 체적 산란보다 높게 나타났고, R4 (DOY 242, 8월 31일) 이후로는 두 요소간의 값 차이가 크게 나타났다. Pauli decomposition ratio을 이용한 벼, 콩 생육단계를 추정하는데 있어 이중 산란이 key factor로 작용하는 것을 알 수 있었다. 벼의 경우 L-밴드에서는 이중 산란이 차지하는 비율이 체적 산란 비율보다 높아지기 시작하는 시점이 분얼기 (DOY 183, 7월 1일)이며, 이중 산란 효과가 벼 출수기 이후 지속적으로 나타나기 때문에 분얼기와 벼 출수기의 생육단계 추정이 가능하다. C-밴드는 이중 산란 비율이 최대값을 나타내는 시점이 벼 출수기와 일치하여 이 시기 추정이 가능할 것으로 판단된다. X-밴드의 경우에는 이중 산란 비율이 최대값을 가지는 시점이 유수형성기 (DOY 206, 7월 24일)로 이 시기 추정이 가능하고, 표면 산란이 다시 증가하는 시점이 유숙기 (DOY 243, 8월 31일)로 이 시기도 pauli decomposition ratio를 이용하여 추정이 가능할 것으로 판단된다. 또한 콩의 경우에는 L-밴드의 이중 산란이 체적 산란보다 높아지는 시기가 R2 (DOY 224, 8월 13일) 임으로 이 시기 예측이 가능할 것으로 판단된다. 따라서 마이크로파 산란계에서 얻어진 decomposition 방법을 이용하여 벼, 콩 생육단계를 예측할 수 있음을 확인하였다.

광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향 (Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency)

  • 김영길;전기수;김태성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석 (Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System)

  • 이공훈;이준식;최만수
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

몬테카를로/유한체적결합법에 의한 국소 가열되는 복잡한 형상에서의 흡수, 방사, 비등방산란 매질에 대한 복사열전달 해석 (Radiative Heat Transfer in Discretely Heated Irregular Geometry with an Absorbing, Emitting, and An-isotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method)

  • 변도영;이창진;장선용
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.580-586
    • /
    • 2004
  • The ray effects of finite volume method (FVM) or discrete ordinate method (DOM) are known to show a non-physical oscillation in solution of radiative heat transfer on a boundary. This wiggling behavior is caused by the finite discretization of the continuous control angle. This article proposes a combined procedure of the Monte-Carlo and finite-volume method (CMCFVM) for solving radiative heat transfer in absorbing, emitting, and an-isotropically scattering medium with an isolated boundary heat source. To tackle the problem, which is especially pronounced in a medium with an isolated heat source, the CMCFVM is suggested here and successfully applied to a two-dimensional circular geometry.

레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구 (A Study on the Soot Particle Measurement in Co-Flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple)

  • 한용택;이기형;이원남
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.863-870
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame has been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distribution in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by particles. A laser extinction method was used to measure the soot volume fraction and laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정 (Measurements of Soot Volume Fraction Using Laser Induced Incandescence)

  • 이승;이상협;이병준;한재원
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.

레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구 (A Study on the Soot Particle Measurement in Co-flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple)

  • 한용택;이기형;이원남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1267-1273
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame have been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles were detected were detected by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by absorbing particles. A laser extinction method was used to measure the soot volume fraction and Laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

  • PDF

Multiple light diffraction theory in volume gratings using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제1권2호
    • /
    • pp.67-73
    • /
    • 1997
  • Light wave diffraction from multiple superposed volume gratings is inestigated using a perturbative iteration method of the integral equation of Maxwell's wave equation. The host material and index gratings are anisotropic and non-coplanar multiple volume gratings are considered. In this method, the paraxial approximation and lack of backward scattering in conventional coupled mode theory are not assumed. Systematic analysis of anisotropic wave diffraction due to multiple noncoplanar volume index gratings is performed in increasing level of diffraction orders corresponding to successive iterations.

혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발 (Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method)

  • 이정기;허강일;진원재
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.