• Title/Summary/Keyword: Volume of pores

검색결과 221건 처리시간 0.023초

Characterization of Lightweight Earthenware Tiles using Foaming Agents

  • Lee, Won-Jun;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho;Hwang, Hae-Jin;Lee, Yong-Ouk
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.473-478
    • /
    • 2015
  • Green bodies of earthenware tile were prepared from a mixture of earthenware tile powder and SiC as forming agents by applying a conventional process. Granule powder for tile samples was prepared using the spray drying method with commercial earthenware raw material with a quantity of SiC of 0.3 wt%. The applied pressure was $250kg{\cdot}f/m^2$ and the firing temperature was $1050-1200^{\circ}C$. The effects of the SiC particle size and sintering temperature on the open porosity and total porosity were investigated and the correlative mechanism was also discussed. While total porosity was not significantly changed by decreasing the SiC particle size, the open porosity showed a gradual decrease, which represents an increase of the closed porosity. As the sintering temperature increased, coarsening was made among the pores due to excessive oxidation. The volume shrinkage and bending strength were demonstrated for the sintered tile samples. The sintered bulk density was also measured to determine the weight reduction value.

유리질 중공체 GHM(Glass Hollow Microsphere)을 활용한 자기의 경량화 (Lightweight Porcelain using GHM(Glass Hollow Microsphere))

  • 김근희;최효성;피재환;조우석;김경자
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.74-79
    • /
    • 2011
  • The pore generation technology using GHM (Glass Hollow Microsphere) was studied in order to reduce the weights of porcelain. In this study, we verify the property of modified slurry by adding GHM. The modified slurry was prepared by adding 1.0~2.5 wt%(K1), 1.0~6.0 wt%(K37) of GHM to the slurry for porcelain. The slurry viscosity were stable inside a content range of 1.0~2.5 wt%(K1), 1.0~6.0 wt%(K37). However, the viscosity of modified slurry increased more than 3.0 wt%(K1) and 6.5 wt%(K37). The formed specimen by slip casting was fired at $1229^{\circ}C$, $1254^{\circ}C$. As the amount of GHM content increased, the weight decreased and the addition of 1.0~2.5 wt%(K1), 1.0~6.0 wt%(K37) of GHM resulted in a weight drop of 30%(K1) and 25(K37). However, when the GHM content increased, the strength decreases over 70%. This is caused by the presence of a large volume of surface defects (pores) and defects from the agglomeration of GHM.

Studies on structural interaction and performance of cement composite using Molecular Dynamics

  • Sindu, B.S.;Alex, Aleena;Sasmal, Saptarshi
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.147-163
    • /
    • 2018
  • Cementitious composites are multiphase heterogeneous materials with distinct dissimilarity in strength under compression and tension (high under compression and very low under tension). At macro scale, the phenomenon can be well-explained as the material contains physical heterogeneity and pores. But, it is interesting to note that this dissimilarity initiates at molecular level where there is no heterogeneity. In this regard, molecular dynamics based computational investigations are carried out on cement clinkers and calcium silicate hydrate (C-S-H) under tension and compression to trace out the origin of dissimilarity. In the study, effect of strain rate, size of computational volume and presence of un-structured atoms on the obtained response is also investigated. It is identified that certain type of molecular interactions and the molecular structural parameters are responsible for causing the dissimilarity in behavior. Hence, the judiciously modified or tailored molecular structure would not only be able to reduce the extent of dissimilarity, it would also be capable of incorporating the desired properties in heterogeneous composites. The findings of this study would facilitate to take step to scientifically alter the structure of cementitious composites to attain the desired mechanical properties.

산화처리 탄소 및 이를 이용한 EDLC 특성 (Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor)

  • 양선혜;김익준;전민제;문성인;김현수;안계혁;이윤표
    • 한국전기전자재료학회논문지
    • /
    • 제20권6호
    • /
    • pp.502-507
    • /
    • 2007
  • The oxidation treatment of several carbon materials with a sodium chlorate and 70 wt.% of nitric acid, combined with heat treatment, were attempted to achieve an electrochemical active material with a larger capacitance. Among pitch, needle coke, calcinated needle coke and natural graphite, the structure of needle coke and calacinated needle coke were changed to the graphite oxide structure with the expansion of the inter-layer. On the other hand, the calcinated needle coke after oxidation and heating at $200^{\circ}C$ has exhibited largest capacitance per weight and volume of 29.5 F/g and 24.5 F/ml at the two-electrode system in the potential range of 0 to 2.5 V. The electrochemical performance of the calcinated needle coke was discussed with the phenomenon of the electric field activation and the formation of new pores between the expanded inter-layer at first charge.

마이크로셀룰라 경량 조습타일의 특성 고찰 (Investigation on the Properties of a Microcellular Light-Weighted Humidity Controlling Tile)

  • 송인혁;이은정;김해두;김영욱;윤달웅
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.404-411
    • /
    • 2011
  • The humidity controlling ceramic materials was developed by applying the phenomena of dew condensation in the capillary. It is said that the humidity range which human feels comfortable is from 40 to 70% in relative humidity. In this study, the ceramic tile using natural soils such as diatomite for interior wall was investigated. In particular, we had introduced novel processing routes for fabricating microcellular ceramics tile using hollow microsphere as a pore former. The microcellular pores in the humidity controlling ceramic materials showed the superior properties such as light-weight, heat insulation. The cell density was ${\sim}1.0{\times}10^9$ cells/$cm^3$ and density of sample was 0.65 g/$cm^3$ in the case of 1.71 wt% hollow microsphere content. Also, it is observed that the BET surface area and the pore volume of the sintered diatomite tile have the values of 40.92 $m^2$/g and 0.173 $cm^3$/g.

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

Highly Sensitive and Selective Ethanol Sensors Using Magnesium doped Indium Oxide Hollow Spheres

  • Jo, Young-Moo;Lee, Chul-Soon;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.303-307
    • /
    • 2017
  • Pure $In_2O_3$, 0.5 and 1.0 wt% Mg doped $In_2O_3$ hollow spheres were synthesized by ultrasonic spray pyrolysis of a solution containing In-, Mg-nitrate and sucrose and their gas sensing characteristics to 5 ppm $C_2H_5OH$, p-xylene, toluene, and HCHO were measured at 250, 300 and $350^{\circ}C$. Although the addition of Mg decreases the specific surface area and the volume of meso-pores, the gas response (resistance ratio) of the 0.5 wt% Mg doped $In_2O_3$ hollow spheres to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ (69.4) was significantly higher than that of the pure $In_2O_3$ hollow spheres (24.4). In addition, the Mg doped $In_2O_3$ hollow spheres showed the highest selectivity to $C_2H_5OH$. This was attributed to the dehydrogenation of $C_2H_5OH$ assisted by basic MgO into reactive $CH_3CHO$ and $H_2$.

활성화 및 에어로졸 공정에 의한 다공성 그래핀 볼 제조 및 슈퍼커패시터 응용 (Synthesis of Porous Graphene Balls by the Activation and Aerosol Process for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제15권4호
    • /
    • pp.183-190
    • /
    • 2019
  • Here, we introduce porous graphene balls (PGB) showing superior electrochemical properties as supercapacitor electrode materials. PGB was fabricated via activation of graphene oxides (GO) by H2O2 and aerosol spray drying in series. Effect of activation on the morphology, specific surface area, pore volume, and electrochemical properties were investigated. As-prepared PGB showed spherical morphology containing pores, which lead to the effective prevention of restacking in graphene sheets. It also exhibited a large surface area, unique porous structures, and high electrical conductivity. The electrochemical properties of the PGB as electrode materials of supercapacitor are investigated by using aqueous KOH under symmetric two-electrode system. The highest specific capacitance of PGB was 279 F/g at 0.1 A/g. In addition, the high rate capability (93.8% retention) and long-term cycling stability (92.2%) of the PGB were found due to the facilitated ion mobility between the porous graphene layers.

폐 브라운관(CRT) 유리의 잔골재 대체가 모르타르 시험체의 감마선 차폐에 미치는 영향 (Effect of Replacing Fine Aggregate by Cathode-Ray Tube(CRT) Waste Glass on Gamma-ray Shielding Properties of Cement Mortar Specimen)

  • 최윤석;이선민;김태상;김일순;양은익
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.172-180
    • /
    • 2019
  • 이 연구에서는 CRT 폐유리의 잔골재 대체율과 재료 물성(조성)을 달리한 모르타르의 미세구조와 감마선 차폐 효율을 평가하였다. 실험 결과에 따르면 CRT 폐유리의 잔골재 대체율이 증가할수록 50nm 크기 이하와 400nm 크기 이상의 공극 볼륨이 증가하였으며, 선헝감쇠계수는 상승하고 반가층은 작아지는 결과를 나타냈다. 또한, CRT 폐유리의 대체했을 때 강도는 감소하였으나 혼화재를 치환하여 OPC 이상의 강도값을 확보할 수 있었다.

고온열전재료 $FeSi_2$의 변태거동 (Transformation Behaviour of High Temperature Thermoelectric $FeSi_2$)

  • 은영효;민병규;이동희
    • Applied Microscopy
    • /
    • 제25권3호
    • /
    • pp.90-98
    • /
    • 1995
  • In the Fe-Si system, a mixture of a($Fe_{2}Si_5$) - and ${\epsilon}$(FeSi)-composition powders was sintered and heat-treated subsequently at various temperatures and time to get thermoelectric ${\beta}$-phase($FeSi_2$) compacts. The different transformational sequences depending on the heat treating temperature were found through the investigation into phase transformation and microstructural development. That is, a rapid eutectoid decomposition of ${\alpha}{\to}{\beta}+Si$ occurred together with a accompanying slow reaction between the dispersed Si formed by above decomposition and the preexisted ${\epsilon}$ phase at temperatures below $830^{\circ}C$. The unreacted Si and the micropores formed due to the density change upon the transformation coarsened as heat treating time elapsed. At temperatures above $880^{\circ}C$, however, transformation was proceeded by a peritectoid reaction of ${\alpha}+{\epsilon}{\to}{\beta}$. It took at least 200min. to achieve 90% volume fracion of transformed ${\beta}$ phase, and the growth of micro-pores was also observed in this transformational sequence with prolonged heat treating time.

  • PDF