• Title/Summary/Keyword: Volume of distribution

Search Result 2,607, Processing Time 0.032 seconds

Distribution Analysis of TRISO-Coated Particles in Fully Ceramic Microencapsulated Fuel Composites

  • Lee, Hyeon-Geun;Kim, Daejong;Lee, Seung Jae;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.400-405
    • /
    • 2018
  • FCM nuclear fuel, a concept proposed as an accident tolerant fuel in light water reactors, consists of TRISO fuel particles embedded in a SiC matrix. The uniform dispersion of internal TRISO fuel particles in the FCM fuel is very important for improving the fuel efficiency. In this study, FCM sintered pellets with various volume ratios of TRISO-coated particles were prepared by hot press sintering. The distribution of TRISO-coated particles was quantitatively analyzed using X-ray ${\mu}CT$ and expressed as a dispersion uniformity index. TRISO-coated particles were most uniformly dispersed in the FCM pellets prepared using only overcoated TRISO particles without mixing of additional SiC matrix powder. FCM pellets with uniformly dispersed TRISO particle volume fraction of up to 50% were prepared using overcoated TRISO particles with varying thickness.

Key Audit Matters Readability and Investor Reaction

  • CHIRAKOOL, Wichuta;POONPOOL, Nuttavong;WANGCHAROENDATE, Suwan;BHONGCHIRAWATTANA, Utis
    • Journal of Distribution Science
    • /
    • v.20 no.9
    • /
    • pp.73-81
    • /
    • 2022
  • Purpose: This study aimed to examine whether key audit matters (KAMs) readability influences investor reaction. Research design, data, and methodology: The signaling theory was applied to explain the behavior of investors when they receive useful information for their decisions. Data were collected from 1,866 firm-year observations from Thai listed companies in both the Stock Exchange of Thailand (SET) and the Market for Alternative Investment (MAI) for the fiscal years of 2016-2019. The study was based on secondary data, which were collected from the SET Market Analysis and Reporting Tool (SETSMART) database and the Stock Exchange of Thailand's website (www.set.or.th). A statistical regression method was used with panel data analysis to evaluate possible associations between KAMs readability and investor reaction. The study relied on popular readability measures (Fog Index). Moreover, investor reaction was measured by absolute cumulative abnormal return and abnormal trading volume. Results: It was found that the KAMs readability has positive significance on both absolute cumulative abnormal return and abnormal trading volume. Conclusion: This study showed a significant contribution to the implication of KAMs in an emerging economy. The results reveal that more readable KAMs disclosure distributed new insights and useful information to investors and led to reducing the information gap between auditors and investors.

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.

Effect of Coning Combinations on Working Performances of Wavy Mechanical Face Seal (코닝 조합이 물결 프로파일이 가공된 미케니컬 페이스 실의 작동 성능에 미치는 영향)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.70-80
    • /
    • 2012
  • Non-contact type mechanical face seals installed in mechanical systems prevent leakage of working fluid using thin working fluid film between stator and rotor. For that purpose, various kinds of surface profiles, grooves and conings have been applied on seal surfaces of stator and rotor to generate hydrodynamic and hydrostatic pressure. The thickness distribution of working fluid film is one of important factors which affect the working performances of mechanical face seal, and it is strongly affected by the surface height profiles of stator and rotor. Therefore, appropriate design of surface height profiles of stator and rotor is necessary to optimize the working performances and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to estimate the working performances of wavy mechanical face seals which have 36 coning combinations. As results, minimum thickness of working fluid film, leakage volume of working fluid and friction torque in static equilibrium condition of mechanical face seal, and stiffness of working fluid film were obtained. The results show that the working performances of mechanical face seal were affected by the coning combinations which can change the thickness distribution of working fluid film and pressure distribution in sealing region of mechanical face seal.

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.

Resistance Analysis by Distribution of Relaxation Time According to Gas Diffusion Layers and Binder Amounts for Cathode of High-temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자 막 전해질 연료전지 캐소드의 가스 확산층 및 바인더 함량에 따른 완화 시간 분포(DRT) 저항 분석)

  • DONG HEE KIM;HYOEN SEUNG JUNG;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.283-291
    • /
    • 2023
  • The physical properties were analyzed for four gas diffusion layers, and gas diffusion electrodes (GDEs) for the cathode of high-temperature polymer electrolyte membrane fuel cell were fabricated through bar coating with three binder to carbon (B/C) ratios. Among them, The GDE from JNT30-A6P showed a significant change in secondary pore volume at a B/C ratio of 0.31, which had the largest pore volume among all GDEs. In the polarization curve, JNT30-A6P GDE showed the best membrane electrode assembly (MEA) performance with a peak power density of 384 mW/cm2 at a a B/C ratio of 0.31. From the distribution of relaxation time analysis, the peak 1 corresponding to mass transfer resistance of oxygen reduction reaction (ORR) was significantly reduced in the JNT30-A6P GDE. This is the result that when the binder content decreased, the volume of the secondary pore increased, and the mass transfer resistance of ORR decreased, which played an essential role in the MEA performance.

A Study on the Distribution of Summer Water Temperatures of the Central Coast of the Southern Sea of Korea Using Numerical Experimentation (수치실험을 이용한 남해 중부 연안의 하계 수온 분포 연구)

  • Choi, Min-Ho;Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • To understand the spatial-temporal distribution of seawater in Korea's South Sea, seawater movement and the distribution of water temperature has been analyzed using a hydrodynamic model (the Princeton Ocean Model). The directions of tidal currents were generally westward during flood tides and eastward during ebb tides. Northeastward Tsushima Warm Currents in the open sea, which is deeper than 50m were stronger than in coastal areas. Analysis of data from the hydrodynamic model showed that the water temperature in the semi-closed bay was relatively higher ($26{\sim}28^{\circ}C$) than in the open sea ($18{\sim}22^{\circ}C$). The exchange volume of semi-closed seawater was $10,331m^3/sec$ in Gwangyang Bay, $16,935m^3/sec$ in Yeosu-Gamag Bay and $13,454m^3/sec$ in Geoje-Hansan Bay. Therefore, it was shown that the lower seawater exchange volume is, the higher seawater temperature will be.

Uncertainty Analysis of the Calculated Radioactivity in Liquid Effluent Released as Batch Mode from a Nuclear Power Plant (발전용원자로에서 뱃치방식으로 배출되는 액체상 방사성물질의 방사능 평가결과에 대한 불확도 해석)

  • 정재학;박원재
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.562-571
    • /
    • 2003
  • A series of factors such as sampling, pretreatment measurement, volume estimation which induces uncertainty of the calculated radioactivity in liquid effluent released from a nuclear power plant were analyzed. It is innately impossible to estimate exact error of the calculated radioactivity, since most of the input parameters are determined by a single measurement and true value of the released radioactivity cannot be known. In this paper, a systematic model to calculate uncertainty of the released liquid radioactivity was developed based upon the guidance report published by the ISO in 1993, and the model was applied to a set of hypothetical batch release conditions. As a result, the Priority of each input parameter was turned out to be (1) wastewater volume, (2) sample volume, and (3) measured radioactivity of the sample. In addition, probability distribution of the released radioactivity was simulated by Monte Carlo method combining the probability distribution of each input parameter It was shown that the radioactivity released to the environment, which has been reported as a single value, has a certain form of probability distribution.

  • PDF

Effect of Curvature Dependency of Surface Tension on the Result of Pore-Volume Distribution Analysis (동공부피 분포의 계산결과에 미치는 표면장력의 곡률 의존도 효과)

  • Cho Chang-Hyun;Ahn Woon-Sun;Chang Seihun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 1972
  • The significance of the curvature dependency correction of surface tension is studied in calculating the pore volume distribution of porous adsorbent from nitrogen adsorption isotherm. That is, Kelvin radii are calculated with curvature dependent surface tension values calculated by Chang et al, and then with these Kelvin radii, pore volume distributions of three porous adsorbents, silica alumina (steam deactivated), silica gel (Davidson 59), and silica gel (Mallinc-krodt Standard Luminescent), are calculated. The results are compared with those obtained by the previous method in which surface tension is taken as constant and also with the others. obtained by the modelless method proposed by Brunauer et al. The maximum point of the distribution curve shift to the larger pore radius, when the curvature dependency is considered. Furthermore, the relative pressure at which capillary condensation commences is by far the lower than that accepted previously. This effect becomes significant as the pore radius approaches to the micropore range.

  • PDF

Comparison of Tear Distributions by the Corneal Eccentricity when Fitted with Spherical and Aspherical RGP Lenses (구면 및 비구면 RGP렌즈 피팅 시 각막 이심률별 눈물분포 비교)

  • Kim, Jihye;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.2
    • /
    • pp.99-108
    • /
    • 2016
  • Purpose: The present study was aimed to compare the tear volume and distribution by corneal eccentricity when fitted with spherical and aspherical RGP lenses. Methods: Spherical and aspherical RGP lenses were fitted in best alignment on a total of 77 subjects (136 eyes) in their twenties and thirties without any ocular disease or ocular surgery experience. The tear volume was analyzed by estimating the concentration of tear stained with fluorescein in the center of RGP lens as well as at the mid-peripheral and peripheral areas, and the difference of tear distributions was analyzed according to corneal eccentricity. Results: Tear distribution from the center to the peripheral area was not significantly different when spherical RGP lenses were fitted on the corneal eccentricities of e < 0.38 and $0.68{\leq}e$, indicating the relatively even tear distribution compared with other corneal eccentricity. In the case of aspherical RGP lenses, the difference of tear distribution between the central and peripheral areas was smaller than spherical RGP lenses. The significant difference of tear distribution according to RGP lens design was observed in the corneal eccentricity of 0.48 < e < 0.68. In other words, more even tear distribution was shown when aspherical RGP lenses were fitted on the cornea with eccentricity of $0.48{\leq}e<0.68$ and spherical RGP lenses were fitted on the cornea with eccentricity $0.68{\leq}e$. Furthermore, tear volume in the mid-peripheral area increased with higher corneal eccentricity. Conclusions: The results suggest that the appropriate selection of RGP lens design according to corneal eccentricity is necessary since tear volume and distribution by the regions of spherical and aspherical lenses are affected by corneal eccentricity.