• Title/Summary/Keyword: Volume comparison

Search Result 1,688, Processing Time 0.028 seconds

A Study on the Various Volume Reducing Methods for Wasted EPS Foam (폐스티로폼의 감용방식에 관한 연구)

  • Lim, Joong-Yeon;Choi, Ho-Joon;Hwang, Beong-Bok
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.165-169
    • /
    • 2003
  • Current volume reduction methods for wasted expandable polystyrene (EPS) foam are summarized and compared each other. Wasted EPS foam has not been recycled effectively because of its large volume to weight ratio. This has prevented from its proper recycling because of high cost of transportation to recycling plant. Successful recycling of wasted EPS foam results directly from successful, i.e. economically and environmentally, volume reduction of wasted EPS foam. This paper deals with various methods for volume reduction methods of wasted EPS foam. Five typical methods of volume reduction are introduced and they are compared each other in terms of expected PS properties after volume reduction, cost effectiveness of each process, possible effects on environment caused by the volume reduction process, and possible recycled products. The methods include thermal, solvent, far infrared and mechanical compaction. Comparison in this paper is made mostly in qualitative manner. The focus in this study is concentrated on summarizing and comparing existing methods of volume reduction for wasted EPS foam.

  • PDF

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.

Comparison of Vendor-Provided Volumetry Software and NeuroQuant Using 3D T1-Weighted Images in Subjects with Cognitive Impairment: How Large is the Inter-Method Discrepancy?

  • Chung, Jieun;Kim, Hayoung;Moon, Yeonsil;Moon, Won-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.2
    • /
    • pp.76-84
    • /
    • 2020
  • Background: Determination of inter-method differences between clinically available volumetry methods are essential for the clinical application of brain volumetry in a wider context. Purpose: The purpose of this study was to examine the inter-method reliability and differences between the Siemens morphometry (SM) software and the NeuroQuant (NQ) software. Materials and Methods: MR images of 86 subjects with subjective or objective cognitive impairment were included in this retrospective study. For this study, 3D T1 volume images were obtained in all subjects using a 3T MR scanner (Skyra 3T, Siemens). Volumetric analysis of the 3D T1 volume images was performed using SM and NQ. To analyze the inter-method difference, correlation, and reliability, we used the paired t-test, Bland-Altman plot, Pearson's correlation coefficient, intraclass correlation coefficient (ICC), and effect size (ES) using the MedCalc and SPSS software. Results: SM and NQ showed excellent reliability for cortical gray matter, cerebral white matter, and cerebrospinal fluid; and good reliability for intracranial volume, whole brain volume, both thalami, and both hippocampi. In contrast, poor reliability was observed for both basal ganglia including the caudate nucleus, putamen, and pallidum. Paired comparison revealed that while the mean volume of the right hippocampus was not different between the two software, the mean difference in the left hippocampus volume between the two methods was 0.17 ml (P < 0.001). The other brain regions showed significant differences in terms of measured volumes between the two software. Conclusion: SM and NQ provided good-to-excellent reliability in evaluating most brain structures, except for the basal ganglia in patients with cognitive impairment. Researchers and clinicians should be aware of the potential differences in the measured volumes when using these two different software interchangeably.

Evaluation of Sampling Methodology for the Measurement of Polycyclic Aromatic Hydrocarbons in the Atmosphere (대기 중 다환방향족 탄화수소의 측정을 위한 시료포집방법의 비교평가)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.43-62
    • /
    • 1998
  • This study was carried out to investigate the influence of different sampling methods on the measured concentrations of polycyclic aromatic hydrocarbons (PAH) both in the vapor and particulate phases, and to evaluate the effects of ambient temperature and sampling duration on the losses of PAH associated with particle samples due to volatilization. The experimental protocol of this study is consisted of two parts. The first part is related to the comparison of PAH concentrations measured by 4 different sampling systems, each of which involves different sampling principles for comparison purposes, including a medium-volume sampler with XAD-2 adsorbent, a high-volume sampler with polyurethane foam (PUF), two identical low-volume samplers: one with XAD-2 and the other with PUF, respectively. The second part of this study is to quantitatively estimate the losses of particulate PAH samples by volatilization during sampling, using two identical low-volume samplers: one was used for changing the filters every 3 hrs, 6 hrs, 12 hrs, and 24 hrs sampling, while the other was maintained for continuous 48 hours sampling without changing the filter. The concentrations of volatile PAH including 2-3 rings appeared to be significantly affected by the type of adsorbent. Measured levels of these lower-molecular weight PAH by XAD-2 adsorbent were much higher than those by PUF for both high-volume and low-volume sampling. PUF was found to give rise to unknown components that interfered with the PAH analysis, even after extensive clean-up. In addition, the retention efficiency of PUF for lower molecular weight PAH was subject to a large variation, being significantly influenced by sampling conditions such as ambient temperature. However, the effect of sampling methods with different adsorbents on the measured levels of semi-volatile compounds including 4 rings PAH such as fluoranthene, pyrene, BaA and chrysene, was not so much significant as more volatile PAH compounds. It was also clear from this study that volatilization losses of the semi-volatile PAH collected on the filters were inevitably occurred during prolonged sampling, and hence the results obtained from conventional sampling methods may not be expected to yield an accurate distribution of PAH between the vapor and particulate phases.

  • PDF

Assessment of The Accuracy of The MR Abdominal Adipose Tissue Volumetry using 3D Gradient Dual Echo 2-Point DIXON Technique using CT as Reference

  • Kang, Sung-Jin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2016
  • In this study, in order to determine the validity and accuracy of MR imaging of 3D gradient dual echo 2-point DIXON technique for measuring abdominal adipose tissue volume and distribution, the measurements obtained by CT were set as a reference for comparison and their correlations were evaluated. CT and MRI scans were performed on each subject (17 healthy male volunteers who were fully informed about this study) to measure abdominal adipose tissue volume. Two skilled investigators individually observed the images acquired by CT and MRI in an independent environment, and directly separated the total volume using region-based thresholding segmentation method, and based on this, the total adipose tissue volume, subcutaneous adipose tissue volume and visceral adipose tissue volume were respectively measured. The correlation of the adipose tissue volume measurements with respect to the observer was examined using the Spearman test and the inter-observer agreement was evaluated using the intra-class correlation test. The correlation of the adipose tissue volume measurements by CT and MRI imaging methods was examined by simple regression analysis. In addition, using the Bland-Altman plot, the degree of agreement between the two imaging methods was evaluated. All of the statistical analysis results showed highly statistically significant correlation (p<0.05) respectively from the results of each adipose tissue volume measurements. In conclusion, MR abdominal adipose volumetry using the technique of 3D gradient dual echo 2-point DIXON showed a very high level of concordance even when compared with the adipose tissue measuring method using CT as reference.

The Study of Effectiveness of Volume Mode in Pediatric CT (소아 전산화단층촬영에서 Volume Mode의 유용성 연구)

  • Park, Yun;Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.425-431
    • /
    • 2014
  • The purpose of this study is to analyze dose comparison and image quality evaluation according to Volume and Helical mode using ATOM Phantom. It is to actively use the Volume mode in pediatric CT examinations. There was no significant difference with Helical and Volume in the value of Noise, HU, SNR(p>0.05). All dose values was no statistical difference(p>0.05). In the value of DLP and effective dose by part, Volume mode was measured lower than Helical mode. For qualitative analysis, by scan parameter helical mode showed respectively 2.6, 3.3, 4.36 and Volume mode indicated 2.8, 3.64, 4.44 point. Image evaluation for the follow-up, Helical mode and Volume mode were respectively 3.8 and 3.83. In fact, There was no significant difference. In CT scans in children under 5 years, because 640-MDCT Volume scan dose compared with Helical mode is lower and there is no significant difference with two modes in the image quality, 640-MDCT Volume scan is thought to be useful for pediatric CT scans.

The Effect of Treadmill Training with Elastic Bands on the Chest Expansion and Pulmonary Functions of Young Adults

  • Lim, Sang-Wan;Seo, Kyo-Chul
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.2
    • /
    • pp.301-307
    • /
    • 2011
  • The purpose of this study was an determine whether elastic band on treadmill training might effect the chest expansion and pulmonary function of the 20's men. 40 subjects with experimental group(male: 20) and control group(male: 20) was participated in experiment. During four weeks, each group participated thirty minutes for three times per week. Subjects were assessed using pre-value and post-value measurement chest length(chest length for resting, chest expansion) and pulmonary function(forced vital capacity, forced expiratory volume at one second, FEV1/FVC, peak expiratory flow, vital capacity, tidal volume, expiratory reserve volume, inspiratory reserve volume) by the CardioTouch 3000S(BIONET, USA). These findings suggest that experimental group can be used to improve chest expansion, pulmonary function than control group. In comparison of both groups, post-test was more improved in experimental group. In conclusion, experimental group helped improving function of pulmonary volume and respiratory muscle, and thus it indicates that the functions will be more improved through the continued respiratory exercise program.

A Study on the comparison of FEM and FEM for Backward Impact Extrusion Process (후방 충격압출 성형 공정의 FVM과 FEM의 적용성에 관한 연구)

  • 정상원;조규종;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1565-1568
    • /
    • 2003
  • The backward extrusion process is one of the commonly used metal forming processes. In this paper. a battery case which has the rectangular section, is analyzed using a 3D metal forming package(MSC.Superforge). This pacakge uses the finite volume analysis method. It is shown that the MSC.Superforge package using finite volume method provides result very close to those obtained from a finite element analysis package(MSC.Superform). However, the simulation time using the finite volume method was almost 10 % of the simulation time consumed by the other package using finite element method. Moreover, the finite volume method used in MSC.Superforge can eliminate the remeshing problems that make the simulating a metal forming process with severe deformation, such as the extrusion process, so difficult.

  • PDF

Comparison of Oil Recovery Performance between Disk Materials of Oil Skimmer (유회수기용 디스크 소재별 성능 비교)

  • Jang Duck-Jong;Na Son-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.103-108
    • /
    • 2005
  • For the development of a disk type oil skimmer for a tank lorry, a basic study on comparison of oil recovery performance between disk materials of oil skimmer was conducted. The experiment results are summarized as follows: In all the disks, the volume of recovery of bunker-A oil was greater than diesel oil. In light oil, there was nearly no differences in the volume of oil recovery by disk material, but in the case of bunker A oil, recovery efficiency showed big differences depending on the disk materials. For diesel oil, the differences in the volume of oil recovery per unit of operation time from the initial time zone were hardly shown. However, the volume of recovery of bunker-A oil linearly increased from the initial operation time in all the disks and the increase showed a slew moving trend as time. went on; therefore, the volume of oil recovery per unit of operation time showed differences depending on time. This result shows that oil viscosity has an effect on the disk recovery efficiency. When comparing the mass of pure oil recovery and the volume of water recovery in the total mass of recovery by bunker-A oil, there was no difference in the volume of oil recovery between the window-aluminum material disk and the disks consisting of other materials, but the volume of water recovery of the former was relatively very small This shows the most ideal result in view of oil recovery efficiency that considers the volume of water recovery. In conclusion, it was found that aluminum is the most advantageous as the material for tank lorry oil skimmer disk.

  • PDF

The Estimation of Soil Conversion Factor using Digital Imagery (수치영상을 이용한 토량환산계수 산정)

  • 이종출;차성렬;장호식;김진수
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.169-174
    • /
    • 2003
  • Design of a rational earth volume conversion coefficient is required as the earth volume conversion coefficient may give great influence on construction work volume and construction costs in the civil engineering works where large-scaled earth volume is excavated. However, there are a great deal of difficulties in the calculation of the exact spoil surface earth and Insufficient earth volume by adopting the figures presented on the generally used design specifications which are not the results obtained from the selection tests in calculating the earth volume conversion coefficient. In this connection, it would be desirable to calculate the earth volume conversion coefficient by carrying out large-scaled site test adequate for the relevant environment. In consequence, this study aims at calculating the exact earth volume conversion coefficient of cutting and banking areas of weathering rocks in large-scaled construction sites where land is being developed into home lots. For this, we have excavated the respective 20 sites of the cutting and banking areas in the said site and then calculated the volume after the excavation. As a result, the relative exactness degree of the crossing was calculated at 0.5% in average. The relative exactness degree of 0.5% in the volume may be judged as an exact measurement as it corresponds to 0.17% of the relative exactness degree in the length measurement. We have calculated the exact earth volume conversion coefficient by the use of function ratio as per the wet unit weight and the indoor soil quality test as per volume calculated. And then we have found out minor differences as a result of the comparison and analysis with the earth volume conversion coefficient determined by the dry unit weight test as per sand replacement method. This may be judged as a rational design method for the calculation of earth volume conversion coefficient, as well as high reliability of site test as a precision photogrammetry is adopted for volume measurement of the irregular excavating areas.

  • PDF