• Title/Summary/Keyword: Volume Velocity

Search Result 1,288, Processing Time 0.028 seconds

Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.325-331
    • /
    • 2017
  • In this study, vibration and stability of concrete pipes reinforced with carbon nanotubes (CNTs) conveying fluid are presented. Due to the existence of CNTs, the structure is subjected to magnetic field. The radial fore induced with fluid is calculated using Navier-Stokes equations. Characteristics of the equivalent composite are determined using Mori-Tanaka model. The concrete pipe is simulated with classical cylindrical shell model. Employing energy method and Hamilton's principal, the motion equations are derived. Frequency and critical fluid velocity of structure are obtained analytically based on Navier method for simply supported boundary conditions at both ends of the pipe. The effects of fluid, volume percent of CNTs, magnetic field and geometrical parameters are shown on the frequency and critical fluid velocity of system. Results show that with increasing volume percent of CNTs, the frequency and critical fluid velocity of concrete pipe are increased.

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.

Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation

  • Natanzi, Abolfazl Jafari;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • In this study, nonlinear vibration and stability of a polymeric pipe reinforced by single-walled carbon naotubes (SWCNTs) conveying fluid-nanoparticles mixture flow is investigated. The Characteristics of the equivalent composite are determined using Mori-Tanaka model considering agglomeration effects. The surrounding elastic medium is simulated by orthotropic visco-Pasternak medium. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The influence of volume percent of SWCNTs, agglomeration, geometrical parameters of pipe, viscoelastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of pipe. Results showed the increasing volume percent of SWCNTs leads to higher frequency and critical fluid velocity.

A Comparison of a Lagrangian Vortex Method with a Finite Volume Method for the Vorticity-Velocity Formulation. (와도-속도 정식화에서 Lagrangian 보오텍스법과 유한체적법의 비교)

  • Kim Kwang-Soo;Lee Seung-Jae;Suh Jung-Chun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.47-52
    • /
    • 2002
  • We present an improved Lagrangian vortex method in 2-D incompressible unsteady viscous flows, which is based on a mesh-free integral approach of the velocity-vorticity formulation. Vorticity fields are represented by discrete vortex blobs that are updated by the Lagrangian vorticity transport with the particle strength exchange scheme. Velocity fields are expressed in a form of the Helmholtz decomposition, which are calculated by a fast algorithm of the Biot-Savart integration with a smoothed kernel and by a well-established panel method. No-slip condition is enforced through viscous diffusion of vorticity from a solid body into field. The vorticity flux is determined in such a way that spurious slip velocity vanishes. Through the comparison with the existing finite volume scheme for the transient vortical flows around an impulsively started cylinder at Reynolds number Re=550, we would obtain a more accurate scheme for vortex methods in complicated flows.

  • PDF

Computation of pressure fields in application of the Lagrangian vortex method (Lagrangian 보우텍스방법에서의 압력장계산)

  • Kim K. S.;Lee S. J.;Suh J. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.37-42
    • /
    • 2003
  • A vorticity-velocity integro-differential formulation of incompressible Wavier-Stokes equations is described, focusing on a scheme for calculating pressure fields in application of the Lagrangian vortex method in connection with panel methods. It deals with the dynamic coupling among velocity, vorticity and pressure, and the Helmholtz decomposition of the velocity field, through a comparative study with the Eulerian finite volume method, we provide an extensive understanding of the Lagrangian vortex methods for numerical simulations of viscous flows around arbitrary bodies.

  • PDF

Classical shell theory for instability analysis of concrete pipes conveying nanofluid

  • Keikha, Reza;Heidari, Ali;Hosseinabadi, Hamidreza;Haghighi, Mohammad Salkhordeh
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.161-166
    • /
    • 2018
  • This paper deals with the instability analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The fluid is mixed by $AL_2O_3$ nanoparticles where the effective material properties of fluid are obtained by mixture rule. The applied force by the internal fluid is calculated by Navier-Stokes equation. The structure is simulated by classical cylindrical shell theory and using energy method and Hamilton's principle, the motion equations are derived. Based on Navier method, the critical fluid velocity of the structure is calculated and the effects of different parameters such as fluid velocity, volume percent of nanoparticle in fluid and geometrical parameters of the pipe are considered. The results present that with increasing the volume percent of nanoparticle in fluid, the critical fluid velocity increase.

Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation (다경간 전열관의 난류 여기에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF

A development of traffic information detection using camera

  • 김양주;한민홍
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.316-323
    • /
    • 1995
  • This paper presents an image processing technique to get traffic information such as vehicle volume, velocity, and occupancy for measuring the traffic congestion rate. To obtain these information, two horizontal lines are previously set on the screen. A moving vehicle is detected using the gray level difference on each line, and also template matching method at night. Threshold values are determined by sampling pavement grey level, and updated dynamically to cope with the change of ambient light conditions. These technique is successfully used to calculate vehicle volume, occupancy, and velocity. This study can be applied to traffic signal control system for minimizing traffic congestion in urban areas.

  • PDF

A Numerical Study on Effects of Flow Through Openings on Convection (개구부의 유동이 대류에 미치는 영향에 관한 수치연구)

  • 박외철;이경아
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2000
  • The finite control volume method was utilized to investigate the effects of flow through openings on convection in an enclosure. Flow patterns and temperature distribution were compared for non-dimensional inflow velocity U=20, 40, 60 at Ra=$10^4$ and $5\times10^4$, respectively. The inflow velocity influenced temperature distribution in the enclosure significantly and lowered temperature on the top wall. The flow through openings forced the position of the highest temperature on the top wall to move toward the outflow opening.

  • PDF