• 제목/요약/키워드: Volume Ratio Coefficient

검색결과 223건 처리시간 0.024초

Reliability of Portable Spirometry Performed in the Korea National Health and Nutrition Examination Survey Compared to Conventional Spirometry

  • Park, Hye Jung;Rhee, Chin Kook;Yoo, Kwang Ha;Park, Yong Bum
    • Tuberculosis and Respiratory Diseases
    • /
    • 제84권4호
    • /
    • pp.274-281
    • /
    • 2021
  • Background: The Korea National Health and Nutrition Examination Survey (KNHANES) is a well-designed survey to collect national data, which many researchers have used for their studies. In KNHANES, although portable spirometry was used, its reliability has not been verified. Methods: We prospectively enrolled 58 participants from four Korean institutions. The participants were classified into normal pattern, obstructive pattern, and restrictive pattern groups according to their previous spirometry results. Lung function was estimated by conventional spirometry and portable spirometry, and the results were compared. Results: The intraclass correlation coefficients of forced vital capacity (FVC) (coefficient, 9.993; 95% confidence interval [CI], 0.988-0.996), forced expiratory volume in 1 second (FEV1) (coefficient, 0.997; 95% CI, 0.995-0.998), FEV1/FVC ratio (coefficient, 0.995; 95% CI, 0.992-0.997), and forced expiratory flow at 25-75% (FEF25-75%; coefficient, 0.991; 95% CI, 0.984-0.994) were excellent (all p<0.001). In the subgroup analysis, the results of the three parameters were similar in all groups. In the overall and subgroup analyses, Pearson's correlation of all the parameters was also excellent in the total (coefficient, 0.986-0.994; p<0.001) and subgroup analyses (coefficient, 0.915-0.995; p<0.001). In the paired t-test, FVC, FEV1/FVC, and FEF25-75% estimated by the two instruments were statistically different. However, FEV1 was not significantly different. Conclusion: Lung function estimated by portable spirometry was well-correlated with that estimated by conventional spirometry. Although the values had minimal differences between them, we suggest that the spirometry results from the KNHANES are reliable.

Refractive Indices and Densities of B2O3-Al2O3-SiO2 Glass System for Photosensitive Barrier Ribs of Plasma Display Panel (플라즈마 디스플레이 패널의 감광성 격벽을 위한 B2O3-Al2O3-SiO2 유리계의 굴절률과 밀도)

  • Won, Ju-Yeon;Hwang, Seong-Jin;Lee, Sang-Ho;Kim, Hyung-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제22권6호
    • /
    • pp.506-511
    • /
    • 2009
  • For the application of the photosensitive barrier ribs with optimal properties such as glass transition temperature, refractive index and coefficient thermal expansion, the boro-silicate glasses was studied. The glass transition temperature, coefficient thermal expansion, and refractive index of the glasses based on the $B_2O_3-Al_2O_3-Al_2O_3-SiO_2$ glass system have been investigated with the different ratio of BaO/$Na_2O$ and $B_2O_3/Na_2O$. Increasing the ratio of $B_2O_3/Na_2O$ was led to the increase of coefficient thermal expansion and the decrease of glass transition temperature. The increase of refractive index of boro-silicate glasses increased with the density of glasses. We suggest the empirical equation for the prediction of refractive index with the glass density, $n=0.123{\rho}+1.182$ with 0.042 as the standard deviation in the boro-silicate glass system. The aim of the present paper is to give a basic result of the thermal and optical properties for designing the composition of photosensitive barrier ribs in PDP.

Protein Partition in an Aqueous Poly (ethyleneglycol)-salt Two-phase System (Poly(ethyleneglycol)과 인산염용액이 형성하는 2상계에서의 단백질 분획에 관한 연구)

  • Lee, Sam-Pin;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • 제19권4호
    • /
    • pp.285-289
    • /
    • 1987
  • The partition behavior or proteins in an aqueous two-phase system of poly (ethyleneglycol)-potassium phosphate buffer (PEG/PPB) was investigated. The proteins of different surface hydrophobicity, i.e. Bovine serum albumin (BSA), ${\beta}-lactoglobulin$, ovalbumin. moved to the PPB-rich bottom phase in a PEG(12%)/PPB (12%) two-phase system resulting in very low partition coefficients. When the concentration of PPB increased to 15% level. the electric potential of bottom phase changed from +50 mV to zero and the partition coefficient tended to increase. The change In the molar ratio of $K_2HPO_4/KH_2PO_4$ in PPB from 1.43 to 9.55 caused the volume ratio of top to bottom phase $(V_t/V_b)$ to be decreased and protein partition coefficient increased. When the concentration of PPB was elevated from 14% to 26%, the $V_t/V_b$ decreased from 1.5 to 0.39 and the partition coefficient of proteins increased drastically; ${\beta}-lactoglobulin$ 74 fold. BSA 32 fold, ovalbumin 12 fold and lysozyme 5 fold.

  • PDF

The Moisture Absorption Properties of Liquid Type Epoxy Molding Compound for Chip Scale Package According to the Change of Fillers (충전재 변화에 따른 Chip Scale Package(CSP)용 액상 에폭시 수지 성형물 (Epoxy Molding Compound)의 흡습특성)

  • Kim, Whan-Gun
    • Journal of the Korean Chemical Society
    • /
    • 제54권5호
    • /
    • pp.594-602
    • /
    • 2010
  • Since the requirement of the high density integration and thin package technique of semiconductor have been increasing, the main package type of semiconductor will be a chip scale package (CSP). The changes of diffusion coefficient and moisture content ratio of epoxy resin systems according to the change of liquid type epoxy resin and fillers for CSP applications were investigated. The epoxy resins used in this study are RE-304S, RE310S, and HP-4032D, and Kayahard MCD as hardener and 2-methylimidazole as catalyst were used in these epoxy resin systems. The micro-sized and nano-sized spherical type fused silica as filler were used in order to study the moisture absorption properties of these epoxy molding compound (EMC) according to the change of filler size. The temperature of glass transition (Tg) of these EMC was measured using Dynamic Scanning Calorimeter (DSC), and the moisture absorption properties of these EMC according to the change of time were observed at $85^{\circ}C$ and 85% relative humidity condition using a thermo-hygrostat. The diffusion coefficients in these EMC were calculated in terms of modified Crank equation based on Ficks' law. An increase of diffusion coefficient and maximum moisture absorption ratio with Tg in these systems without filler can be observed, which are attributed to the increase of free volume with Tg. In the EMC with filler, the changes of Tg and maximum moisture absorption ratio with the filler content can be hardly observed, however, the diffusion coefficients of these systems with filler content show the outstanding changes according to the filler size. The diffusion via free volume is dominant in the EMC with micro-sized filler; however, the diffusion with the interaction of absorption according the increase of the filler surface area is dominant in the EMC with nano-sized filler.

An Experimental Study on the Analysis of Infiltration Capacity of the Permeable Block (투수성 보도블록의 침투능 분석에 관한 실험적 연구)

  • Lee, Hoon;Jung, Do-Joon;Kim, Young-Bok;Kim, Yun-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제9권4호
    • /
    • pp.99-106
    • /
    • 2009
  • This research was to estimate quantitative infiltration volume of permeable block which is one of runoff reduction infiltration facilities. In this research, the permeable block experiments estimating infiltration volume for 50, 100, 150, 200 mm/hr rainfall intensity were carried out and hydraulic experiments results were compared with numerical simulation output to produce feasibility of numerical simulation. Final infiltration capacity analysis of permeable block hydraulic experiments reveals that every estimated infiltration volume before runoff beginning was above approximately 300.0 l despite rapid reduction of infiltration ratio and runoff initiation time were occurred in every rainfall intensity. Statistical calculation for coefficient of determination based on cumulative infiltration volume of hydraulic experiment and numerical simulation resulted in a high correlationship as $0.958{\sim}0.996$.

Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core

  • Mohammad Safari;Mehdi Mohammadimehr;Hossein Ashrafi
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, forced vibration behavior of a piezo magneto electric sandwich Timoshenko beam is investigated. It is assumed a sandwich beam with porous core and graphene platelet reinforced composite (GPLRC) in facesheets subjected to magneto-electro-elastic and temperature-dependent material properties. The magneto electro platelets are under linear function along with the thickness that includes a cosine function and magnetic and electric constant potentials. The governing equations of motion are derived using modified strain gradient theory for microstructures. The effects of material length scale parameters, temperature change, different distributions of porous, various patterns of graphene platelets, and the core to face sheets thickness ratio on the natural frequency and excited frequency of a sandwich Timoshenko beam are scrutinized. Various size-dependent methods effects such as MSGT, MCST, and CT on the natural frequency is considered. Moreover, the final results affirm that the increase in porosity coefficient and volume fractions lead to an increase in the amount of natural frequency; while vice versa for the increment in the aspect ratio. From forced vibration analysis, it is understood that by increasing the values of volume fraction and the length thickness of GPL, the maximum deflection of a sandwich beam decreases. Also, it is concluded that increasing the temperature, the thickness of GPL, and the initial force leads to a decrease in the maximum deflection of GPL. It is also shown that resonance phenomenon occurs when the natural and excitation frequencies become equal to each other. Outcomes also reveal that the third natural frequency owns the minimum value of both deflection and frequency ratio and the first natural frequency has the maximum.

Wind loads on fixed-roof cylindrical tanks with very low aspect ratio

  • Lin, Yin;Zhao, Yang
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.651-668
    • /
    • 2014
  • Wind tunnel tests are conducted to investigate the wind loads on vertical fixed-roof cylindrical tanks with a very low aspect ratio of 0.275, which is a typical ratio for practical tanks with a volume of $100,000m^3$. Both the flat-roof tank and the dome-roof tank are investigated in present study. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. It is shown that the wind loads are closely related to the behavior of flow around the structure. For either tank, the mean wind pressures on the cylinder are positive on the windward area and negative on the sides and the wake area, and the mean wind pressures on the whole roof are negative. The roof configurations have no considerable influence on the mean pressure distributions of cylindrical wall in general. Highly non-Gaussian feature is found in either tank. Conditional sampling technique, envelope method, and the proper orthogonal decomposition (POD) analysis are employed to investigate the characteristics of wind loads on the cylinder in more detail. It is shown that the patterns of wind pressure obtained from conditional sampling are similar to the mean pressure patterns.An instantaneous pressure coefficient can present a wide range from the maximum value to the minimum value. The quasi-steady assumption is not valid for structures considered in this paper according to the POD analysis.

The Effect of Traffic Volume on the Air Quality at Monitoring Sites in Gwangju (광주광역시 대기오염측정소 주변 교통량이 대기질에 미치는 영향)

  • Lee, Dae-Haeng;An, Sang-Su;Song, Hyeong-Myeong;Park, Ok-Hyun;Park, Kang-Soo;Seo, Gwang-Yeob;Cho, Young-Gwan;Kim, Eun-Sun
    • Journal of Environmental Health Sciences
    • /
    • 제40권3호
    • /
    • pp.204-214
    • /
    • 2014
  • Objectives: Vehicular emissions are one of the main sources of air pollution in urban areas. Correlation analysis was conducted between air pollutants and traffic volume in order to identify causes of air pollution in Gwangju. Methods: Using traffic volumes and air quality monitoring data from 2002 to 2012 from nine stations (seven urban areas, two roadside areas), especially at three sites where traffic volumes were high, the correlation coefficients were obtained between air pollutants as PM-10 (particulate matter), $NO_2$, $SO_2$, CO and $O_3$ at the stations and traffic volumes near the air monitoring stations. Results: Due to traffic volume and distance between the station and the traffic road, concentrations of pollutants at roadside areas were higher than at urban areas, with the exception of $O_3$. The concentration of $O_3$ showed statistically significance with those of other gas materials as $NO_2$, $SO_2$, and CO in winter (p<0.001) and spring (p<0.05). During the period of October 7 to 20, 2012, excluding periods of yellow dust, smog and rainy season, the ratio of $NO/(NO+NO_2)$ showed the highest value 0.57 and 0.40 at Unam and Chipyeong of two roadside stations, followed by 0.35 at Nongseong with vehicular effects. The correlation coefficient between traffic volume and $O_3$, CO, $NO_2$ became higher when the data on mist and haze days were excluded, than when all hourly data were used in that period, at the three sites of Unam, Chipyeong, and Nongseong. Conclusions: Air quality showed a considerable effect from vehicles at roadside areas compared to in urban areas. Air pollutant diminishment strategies need to be aggressively adopted in order to protect atmospheric environment.

Long Term Monitoring of Storm Surface Runoff from Urban Pavement Road in Korea

  • Lee, C.S.;Seo, G.T.;Lee, J.H.;Yoon, Y.S.;You, J.J.;Sin, C.K.
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.184-191
    • /
    • 2008
  • Long term monitoring was conducted to investigate a surface runoff of pollution from urban highway. The monitoring data was collected for 18 rainfall events and was used to correlate pollution load to various parameters, such as rainfall intensity, antecedent dry days and total discharge flow. Runoff coefficient and seasonal variation were also evaluated. The mean runoff coefficient of the highway was 0.823(range; $0.4687{\sim}0.9884$), and wash-off ratio for $COD_{Mn}$ and SS loads was 72.6% and 64.3%, respectively. For the initial rainfall event, the runoff EMC of $COD_{Mn}$ was high in summer and the EMC of SS was high in autumn season. However the seasonal variation of T-N and T-P was not significant. The discharged $COD_{Mn}$-EMC was $147.6\;mg/L{\sim}9.0\;mg/L$ on the generated $COD_{Mn}$-EMC of $98.8\;mg/L{\sim}8.9\;mg/L$. While the generated EMC of SS was in $285.7\;mg/L{\sim}20.0\;mg/L$ and its discharged EMC was in $190.4\;mg/L{\sim}8.0\;mg/L$. EMC of pollutants was not directly related to the first flush rainfall intensity and the antecedent dry days. But the correlation was relatively high between EMC and cumulative runoff flow volume. The trend of EMC was reduced with the cumulative runoff flow volume.

Sensitivity Analysis of the Runoff Model Parameter for the Optimal Design of Hydrologic Structures (수공구조물의 적정설계를 위한 유출모형 매개변수의 민감도 분석)

  • Lee, Jung-Hoon;Kim, Mun-Mo;Yeo, Woon-Kwang
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.755-758
    • /
    • 2008
  • Currently, the increased run-off and the shortened arrival time are one of the causes of the city environmental disasters in urbanization. Therefore, it is necessary to properly design the hydrologic structures, but it is very difficult to forecast the values necessary to design from the planning stage. Moreover, as the parameter is changed due to the urban development, it is difficult not only to analyze the run-off influences but also to find the related studies and literatures. The purpose of this study is to utilize the results as the important basic data of the hydrologic structures, its proper design and run-off influences through the sensibility analysis of the model parameter variables. In this study, the absolute and relative sensibility analysis method were used to find out the correlation through the sensibility analysis of the topology and hydrology parameters. Especially, in this study, the changes in the run-off amount and volume were calculated according to increase/decrease in CN, the coefficient of discharge, and the empirical formula is prepared and proposed through the regressive analysis among the parameters. In the meantime, the parameter sensibility analysis was performed through the simulation HEC-HMS that is used and available in Korea. From the results of this study, it was found that the run-off amount is increased about by 10% when the CN value is increased by 5% before and after the development through the HEC-HMS simulation and data analysis. As long as there will be additional data collection analysis and result verification, and continuous further studies to find out the parameters proper to the domestic circumstances, it is expected to considerably contribute to the proper design of the hydrologic structures with respect to the ungauged basin.

  • PDF