• Title/Summary/Keyword: Volume Porosity

Search Result 400, Processing Time 0.028 seconds

The Cracking Reaction of Vacuum Gas Oil on Mordenite Modified by HF and Steaming (불화수소산과 스팀처리한 모더나이트상에서 진공가스유의 분해반응)

  • Lee, Kyong-Hwan;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.925-937
    • /
    • 1996
  • Three types of mordenites treated by steaming($SM_{6.5}$), HF solution for $SM_{6.5}(FM_a)$ and HF solutlon+steaming for $SM_{6.5}(FM_b)$ were prepared and used as cracking catalysts of vacuum gas oil. These samples were analysed by XRF and XPS for average and surface Si/Al atomic ratio, XRD for unit cell constants, nitrogen adsorption/desorption for porosity, pyridine-IR for acidic properties. In comparison with three type samples, $SM_{6.5}$ had a lot of acid amount and showed micropore volume mostly(>85% to total volume). Dealuminated $FM_a$, compared with $SM_{6.5}$, was decreased a little in acid amount and improved for porosity. Also, $FM_b$ was decreased further in acid amount and developed in mesopore dramatically. The catalytic activity and the yield of gasoline, kerosine+diesel and branched aromatic over the modified mordenites which have developed mesopore were improved. This is due to limited access of diffusion of large molecules within pore of the modified mordenites.

  • PDF

Characterization of Ni-YSZ cermet anode for SOFC prepared by glycine nitrate process (Glycine nitrate process에 의한 제조된 SOFC anode용 Ni-YSZ cermet의 물성)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Lee, Kang-Sik;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders were fabricated by glycine nitrate process. The prepared powders were sintered at $1300{\sim}1400^{\circ}C$ for 4 h in air and reduced at $1000^{\circ}C$ for 2 h in a nitrogen and hydrogen atmosphere. The microstructure, electrical conductivity, thermal expansion and mechanical properties of the Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. It was found that the open porosity, electrical conductivity, thermal expansion and bending strength of the cermets are sensitive to the volume content of Ni. The Ni-YSZ cermet containing 40 vol% Ni was ascertained to be the optimum composition. This composition offers sufficient open porosity of more than 30 %, superior electrical conductivities of 917.4 S/cm at $1000^{\circ}C$ and a moderate average thermal expansion coefficient of $12.6{\times}10^{-6}^{\circ}C^{-1}$ between room temperature and $1000^{\circ}C$.

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Resistance to Sulfate Attack of Concrete Containing LCD glass powder Using Industrial By-products (산업부산물을 활용한 LCD 유리 미분말 혼입 콘크리트의 황산염침식 저항성)

  • Kim, Seong-Kyum;Song, Jae-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2019
  • Purpose: This study aims to enhance the resistance against sulfate attack compared to ordinary Portland cement (OPC) concrete by using liquid crystal display (LCD) as binder. Method: The fundamental properties including compressive strength and porosity of concrete replaced by LCD up to 15% at increments of 5% and in turn, the weight, volume, and strength loss of LCD-mixed concrete was analyzed. Results: For the concrete substituted by 5% of LCD, it showed the highest compressive strength at 28 days of curing, and particular at immersion of $Na_2SO_4$ solution, it was achieved the lowest loss of weight, volume and strength due to an decreased porosity at capillaries. In contrast, there is no distinct difference of the sulfate attack resistance between LCD-mixed concretes under exposure of $MgSO_4$ solution, excepted for OPC concrete. Conclusion: In this study, comparison of resistance to sulfate attack between LCD-mixed concretes, and it would be proposed the possibility of LCD usage as binder through long-term verification with extended replacement ratio and identification of changes of hydrates in the cement matrix.

Application of the Electrical Impedance of Rocks in Characterizing Pore Geometry (암석 내 공극구조의 평가를 위한 전기임피던스의 적용)

  • Choo, Min-Kyoung;Song, In-Sun;Lee, Hi-Kweon;Kim, Tae-Hee;Chang, Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.323-336
    • /
    • 2011
  • The hydro-mechanical behavior of the Earth's crust is strongly dependent on the fractional volume and geometrical structure of effective pore spaces. This study aims to understand the characteristics of pores using electrical impedance. We measured the electric impedance of core samples (diameter, 38-50 mm; length, 70-100 mm) of three types of granite (Hwangdeung, Pocheon, and Yangsan) and two types of sandstone (Boryung and Berea) with different porosities and pore structures, after saturation with saline water of varying salinities. The results show that resistance decreases but capacitance increases with increasing salinity of the pore fluid. For a given salinity, the resistivity and formation factor are reduced with increasing porosity of the rocks, and the capacitance increases. Berea sandstone shows anisotropy in resistance, tortuosity, and cementation factor, with these factors being highest normal to bedding planes. This result indicates that the connectivity of pores is weakest normal to bedding. In conclusion, the electrical characteristics of the tested samples are related not only to their porosity but also to the pore geometry.

Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete- (콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성-)

  • Hwang, Eui-Hwan;Hwang, Taek-Sung;Kil, Deog-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1066-1072
    • /
    • 1999
  • The physical properties of polymer concrete were investigated for development of high-performance construction materials. Various specimens of polymer concrete were prepared using unsaturated polyester resin as the polymer-binder with the various dosage of calcium carbonate as microfiller (5~20 wt %) and fine aggregate(10~50 wt %). For the evaluation of the physical properties of polymer concretes, tests such as compressive strength, flexural strength, water absorption test, hot water immersion test, acid resistance test and pore size distribution analysis were conducted. As a result, it is concluded that compressive and flexural strengths of polymer concretes increased up to 4 times than those of conventional cement concrete. Whereas the compressive and flexural strengths of polymer concretes tested after hot water immersion, compared with those of polymer concretes tested before hot water immersion, decreased about 67%, 47%, respectively. By hot water immersion, total pore volume and porosity(%) of polymer concretes were remarkable increased due to decomposition of polymer binder. And also, it is showed that water absorption(%) and weight loss(%) of polymer concrete specimens by acid immersion, compared with those of ordinary portland cement concrete, decreased about 1/100, 1/27, respectively.

  • PDF

A Study on the Alkali Hydrolysis of PET fabrics with Ultrasonic Application(II)- Surface Porosity and Oligomer Analysis - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(II) - 기공특성과 올리고머 분석 -)

  • 김삼수;서말용;박성우;윤태희;이승구;허만우
    • Textile Coloration and Finishing
    • /
    • v.14 no.6
    • /
    • pp.305-312
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The effects of ultrasonic application, treatment time and temperature at NaOH 4% and 6"A solution on the decomposition rate of PET fabrics. From the results of the decomposition rate of PET fabrics, the qualitative and quantitative analysis of oligomer after decomposition of PET fabrics carried out by the HPLC. On the other hand, the surface pore characteristics of decomposition PET fabrics measured by porosimetery. The pore characteristics on the surface of treated PET fiber depended on the decomposition rate and did not depend on the ultrasonic cavitation. The pore diameter of alkaline untreated PET fiber were 15A and those of treated PET fibers were 5~6$\AA$ at the maximum pore volume. The average pore sizes of fiber before and after treatment were 141 h and 160h, respectively. Total amount of oligomer of the untreated PET fibers were 1.70wt% and 67.7% of total oligomer occupied with PET cyclic trimer and PET cyclic tetramer. Total amount of oligomer of fiber with 26.9% and 48.0% of weight loss without ultrasonic application were 1.78wt% and 1.79wt%, respectively. Also total amount oligomer of fibers which were reduced 27.7% and 48.2% of weight loss with ultrasonic application were 1.74wt%. This result showed that the removal rate of oligomer in the process of alkaline hydrolysis with ultrasonic higher than that of without ultrasonic application.tion.

Research on the Ground Water Developement in the Region of Choong Nam Province (충남지역의 지하수개발에 관한 조사)

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1827-1831
    • /
    • 1969
  • Resulties of research on the capacity of ground water of 994 concrete-pipe-wells and 97 infiltration-gallerys in ground-water-developement-works region executed from March to Julyin 1969, in Choong Chung Nam Do, and research on the quality of ground water for 88 wells for home-use around of River Geum Area, are as fellows: (1) Thickness of aquifer is no more than 2.85m averagely even at river-overflowed plain, alluvial plain and valley plain area that are estimated to contain ground water mostly. And so, it is guessed that ground water capacity is not much especially. (2) Soil of aquifer of the above area is sand or gravel and it is estimated to be good for ground water developement and its mean permeability coefficient is bout $2.5{\times}10^{-3}$(m/sec), and its porosity is about 33.9%. (3) The quality of ground water is good for irrigation water exception of delta plain area. Warm water plan is to need for irrigation water when water temperature is less than 19 degrees below zero. (4) Prospect of ground water developement, judging from quality and quantity, expects to lay infiltration gallery under the ground at river bed in order to utilize under-flow-water of river bed, river-overflowed plain, alluvial plain and valley plain that ground level is less than 50m. (5) Collectable water volume of under-flow-water of river bed is about 450 to $750m^3/day$ to be able to irrigate 3ha to 5ha of the cultivated land in case that infiltration gallery length is 50m and its depth is about 5m. (6) Collectable water volume at river-overflowed plain, alluvial plain and valley plain area, is estimated $150m^3/day$ to be able to irrigated 1ha of the cultivated land.

  • PDF

Preparation of Lightweight Aggregate Using Glass Abrasive Sludge and Effects of Pores on the Aggregate Properties (유리연마슬러지를 사용한 경량골재 제조 및 골재의 내부기공이 물성에 미치는 영향에 관한 연구)

  • Chu, Yong-Sik;Lee, Jong-Kyu;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.37-42
    • /
    • 2005
  • Lightweight aggregate was made using glass abrasive sludge and graphite in this study. This study tried to draw the correlation between lightweight aggregate's properties and internal pore. The precursor was made by added different graphite contents and was burned for 20 min. at $700^{circ}C$ and $800^{circ}C$. The volume change of aggregate was checked at before and after homing, and confirmed that the homing temperature effected more than expanding agent on volume change. The size and area of pore in aggregate increased according to the amount of expanding agent and homing temperature but it didn't bring about big effect above $1\%$ of expanding agent. The absorbtion ratio, thermal conductivity and porosity have a high correlation, so each coefficient of correlation showed above $0.8\pm$.

Simultaneous Biofiltration of H2S, NH3 and Toluene using an Inorganic/Polymeric Composite Carrier

  • Park, Byoung-Gi;Shin, Won-Sik;Chung, Jong-Shik
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Simultaneous removal of ternary gases of $NH_3$, $H_2S$ and toluene in a contaminated air stream was investigated over 180 days in a biofilter. A commercially available inorganic/polymeric composite chip with a large void volume (bed porosity > 0.80) was used as a microbial support. Multiple microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) ranged from 60 - 120 seconds and the inlet feed concentration was $0.0325\;g/m^3-0.0651\;g/m^3$ for $NH_3$, $0.0636\;g/m^3-0.141\;g/m^3$ for $H_2S$, and $0.0918\;g/m^3-0.383\;g/m^3$ for toluene, respectively. The observed removal efficiency was 2% - 98% for $NH_3$, 2% - 100% for $H^2S$, and 2% - 80% for toluene, respectively. Maximum elimination capacity was about $2.7\;g/m^3$/hr for $NH_3$, > $6.4\;g/m^3$/hr for $H_2S$ and $4.0\;g/m^3$/hr for toluene, respectively. The inorganic/polymeric composite carrier required 40 - 80 days of wetting time for biofilm formation due to the hydrophobic nature of the carrier. Once the surface of the carrier was completely wetted, the microbial activity became stable. During the long-term operation, pressure drop was negligible because the void volume of the carrier was two times higher than the conventional packing materials.