• Title/Summary/Keyword: Volume Modeling

Search Result 863, Processing Time 0.031 seconds

Function Approximation for Refrigerant Using the Neural Networks (신경회로망을 사용한 냉매의 함수근사)

  • Park, Jin-Hyun;Lee, Tae-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.677-680
    • /
    • 2005
  • In numerical analysis on the thermal performance of the heat exchanger with phase change fluids, the numerical values of thermodynamic properties are needed. But the steam table should be modeled properly as the direct use of thermodynamic properties of the steam table is impossible. In this study the function approximation characteristics of neural networks was used in modeling the saturated vapor region of refrigerant R12. The neural network consists of one input layer with one node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. Input can be both saturation temperature and saturation pressure and two cases were examined. The proposed model gives percentage error of ${\pm}$0.005% for enthalpy and entropy, ${\pm}$0.02% for specific volume and ${\pm}$0.02% for saturation pressure and saturation temperature except several points. From this results neural network could be a powerful method in function approximation of saturated vapor region of R12.

  • PDF

An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure (역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted an effect arising from the reinforcement works so as to prevent the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan(1994) and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could be explained effectively the experimental results which are obtained by a full-scale in-situ model test.

  • PDF

A Study on the 'Extended' DSM Programs in Korean LNG Market (산업용 천연가스 수요관리 프로그램 최적화를 위한 동태적 시뮬레이션에 관한 연구)

  • Chang, Han-Soo;Choi, Ki-Ryun
    • Environmental and Resource Economics Review
    • /
    • v.11 no.2
    • /
    • pp.211-231
    • /
    • 2002
  • This paper summarizes the results of a study that assess how a demand side management (DSM) system addresses key economic and environmental challenges facing in the Korean natural gas sector considering; ${\bullet}$ high discrepancies of seasonal consumption volume and of load factor in unmatured domestic LNG market, ${\bullet}$ unfavorable and volatile international LNG market, imposing with the contestable "take-or-pay" contract terms, ${\bullet}$ low profile of LNG and existence of market barriers against an optimal fuel mix status in the industrial energy sector. A particular focus of this study is to establish an 'extended' DSM system in the unmatured gas market, especially in industry sector, that could play a key role to assure an optimum fuel mix scheme. Under the concept of 'extended' DSM, a system dynamics modeling approach has been introduced to explore the option to maximize economic benefits in terms of the national energy system optimization, entailing different ways of commitments accounting for different DSM measures and time delay scenarios. The study concludes that policy options exist that can reduce inefficiencies in gas industry and end-use system at no net costs to national economy. The most scenarios find that, by the year 2015, it is possible to develop a substantial potential of increased industrial gas end-uses under more reliable and stable load patterns. Assessment of sensitivity analysis suggests that time delay factor, in formulating DSM scenarios, plays a key role to overcome various market barriers in domestic LNG market and provides a strong justification for the policy portfolios 'just in time' (time accurateness), which eventually contribute to establish an optimum fuel mix strategy. The study indicates also the needs of advanced studies based on SD approach to articulate uncertainty in unmatured energy market analysis, including gas.

  • PDF

A Study of 3D Virtual Fitting Model of Men's Lower Bodies in Forties by Morphing Technique. (모핑 기법을 활용한 40대 남성 하반신 가상모델 생성에 관한 연구)

  • Park, Sun-Mi;Nam, Yun-Ja;Choi, Kueng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.3 s.162
    • /
    • pp.463-474
    • /
    • 2007
  • With rapid expansion in e-retailing of apparel business, personalized fitting model service shows the possibility as the differentiated marketing strategy in cyber shopping. According as necessity of personalized fitting model construction rises, it is tried personalized fitting model creation in several fields such as computer engineering, mechanical engineering, information engineering. But, because existent study was concentrated only on human body modeling, it does not reflect average morphological characteristics of human body properly. In this study, we wish to examine if morphing is fit for expressing characteristic of average human body shape and suggest desirable morphing. We used 3-D scan data of 254 Korean middle aged men collected by Size Korea 2004. The result of this study are as follows: Lower body types were categorized by height hip girth and lower drop(hip girth-navel girth) which were main factors of lower body shape. Then each factor was divided into 3 groups respectively, 30% in the middle, over 30%, under 30%. In 27 groups, the group which belonged to 30% in the middle of height, 30% in the middle of hip girth, 30% in the middle of lower drop was selected as a representative group. We tested geometrical figure by differ volume, tilt, position of point. And we created a representative type of men's lower bodies by morphing the representative group and analyzed it's horizontal, vertical sections. A representative type which was created by morphing reflected a real body and changed realistically at the part of hip, crotch, calf muscle and so on. A cross sections of a representative type were similar to average cross sections of the representative group in size and shape. So it was proved that morphing was successful.

A Simplified Model for Compliance Determination of the Moving-Actuator Type Totally Implantable Artificial Heart

  • Park, S.K.;Choi, W.W.;Ahn, J.M.;Kim, S.J.;Choi, J.S.;Jo, Y.H.;Om, K.S.;Lee, J.J.;Kim, H.C.;Choi, M.J.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.82-83
    • /
    • 1996
  • In this paper, we present a simplified model for complicance determination of the moving-actuator type totally implantable artificial heart (TAH). The modeling equations are derived from the mechanics and geometry of the TAH components. The interventricular pressure and volume are computed for determining the compliance of the interventricular space using this model. The model is capable of generating realistic hemodynamic variables such as the left atrial pressure and interventricular pressure and is proved to be acceptable. This model can be used as an initial step for analyzing characteristics of the moving-actuator type TAH.

  • PDF

Analytical Study for the Prediction of Mechanical Properties of a Fiber Metal Laminate Considering Residual Stress (잔류응력을 고려한 섬유 금속 적층판의 기계적 물성치 예측에 관한 이론적 연구)

  • Kang, D.S.;Lee, B.E.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.289-296
    • /
    • 2014
  • Uniaxial tensile tests were conducted to accurately evaluate the in-plane mechanical properties of fiber metal laminates (FMLs). The FMLs in the current study are comprised of a layer of self-reinforced polypropylene (SRPP) sandwiched between two layers of aluminum alloy 5052-H34. The nonlinear tensile behavior of the FMLs under in-plane loading conditions was investigated using both numerical simulations and a theoretical analysis. The numerical simulation was based on finite element modeling using the ABAQUS/Explicit code and the theoretical constitutive model was based on the volume fraction approach using the rule of mixture and a modification of the classical lamination theory, which incorporates the elastic-plastic behavior of the aluminum alloy and the SRPP. The simulations and the model are used to predict the inplane mechanical properties such as stress-strain response and deformation behavior of the FMLs. In addition, a post-stretching process is used to reduce the thermal residual stresses before uniaxial tensile testing of the FMLs. Through comparison of both the numerical simulations and the theoretical analysis with the experimental results, it is concluded that the numerical simulation model and the theoretical approach can describe with sufficient accuracy the actual tensile stress-strain behavior of the FMLs.

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System (편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링)

  • 정찬호;김천수;김통권;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

One-Dimensional Modeling of Hydrogen Generator (수소발생기의 일차원 모델링)

  • Park, Jae Hyun;Lee, Hyojin;Valderrama, Edgar Willy Rimarachin;Yim, Chungsik;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.74-86
    • /
    • 2018
  • This paper presents the one-dimensional model of a hydrogen generator, where the alkali solution was supplied from the top to the dry aluminum powders. Hydrogen was produced as the solution moved downward and reacted with aluminum. The species conservation equations were considered for the hydrogen gas and alkali solution, while the energy conservation equation was applied to the gas-liquid-solid mixture as a single medium. The gas rising velocity and liquid penetration velocity were also included in the theoretical approach. The developed code was validated with the experimental data of the hydrogen production amount and collector pressure. Additionally, the model successfully predicted the various reactor properties, such as the concentrations, volume fractions, and temperatures, and is expected to help significantly in the design of a novel hydrogen generator.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.