• Title/Summary/Keyword: Volume Flux

Search Result 478, Processing Time 0.034 seconds

UNSTRUCTURED MOVING-GRID FINITE-VOLUME METHOD FOR UNSTEADY SHOCKED FLOWS

  • Yamakawa M;Matsuno K
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.24-30
    • /
    • 2005
  • Unstructured grid system is suitable for flows of complex geometries. For problems with moving boundary walls, the grid system must be time-dependently changing and deforming according to the movement of the boundaries when we use a body fitted grid system. In this paper, a new moving-grid finite-volume method on unstructured grid system is proposed and developed for unsteady compressible flows with shock waves. To assure geometric conservation laws on moving grid system, a control volume on the space-time unified domain is adopted for estimating numerical flux. The method is described and applied for two-dimensional flows.

Finite Volume Analysis of a Supersonic Non-Equilibrium Flow Around an Axisymmetric Blunt Body

  • Haoui, R.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2010
  • The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium state for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body. This allows the capture of a shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the flux vector splitting method of Van Leer. Here, adequate time stepping parameters, along with Courant, Friedrich, Lewis coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of $10^{-8}$.

Effect of Volume Fraction of Chromium Carbide on Fracture Toughness of the Iron/Chromium Hardfacing Alloy (철/크롬 오버레이합금의 파괴인성에 미치는 크롬탄화물 양의 영향)

    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.64-72
    • /
    • 1998
  • This study aims a investigating the effect of volume fraction of chromium carbide phase(VFC) of hardfaced iron/chromium alloys on fracture toughness. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. In order to examine VFC effect, different VFC (0.28∼0.62) were employed by changing the Cr and C content, while the ratio of Cr/C was fixed in the range of 5.7∼6.6. Fracture toughness was constant as increasing VFC because fracture surface was developed in the eutectic phase which was growing parallel with introduced sharp notch in the hypoeutectic alloys, but fracture toughness did not decreased in spite of increasing volume fraction of coarse primary chromium carbide phase which was easily craced at the low stress because the growth direction of chromium carbide phase were more irregular as increasing VFC in the hypereutectic alloys.

  • PDF

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

Effect of Water-back-flushing in Advanced Water Treatment System by Tubular Alumina Ceramic Ultrafiltration Membrane (관형 알루미나 세라믹 한외여과막에 의한 고도정수처리 시스템에서 물 역세척의 영향)

  • Park, Jin-Yong;Lee, Song-Hui
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2009
  • In this study periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in advanced water treatment by tubular ceramic ultrafiltration membrane for Gongji stream in Chuncheon city. The back-flushing period (FT, filtration time) 2 min with periodic water-back-flushing of 15 sec showed the highest value of dimensionless permeate flux (permeate flux vs. initial permeate flux), and the lowest value of resistance of membrane fouling. Also in the results of BT effect at fixed FT 10 min, BT (back-flushing time) 20 sec showed the lowest value of resistance of membrane fouling and the highest value of dimensionless permeate flux, and we could be obtained the highest total permeate volume of 107.3 L. Consequently FT 10 min and BT 20 sec could be the optimal condition in Gongji stream water treatment, which was the exactly same results of our previous tubular alumina microfiltration. Then the average rejection rates of pollutants by our tubular ceramic UF system were 97.0% for turbidity, 32.1 % for chemical oxygen demand by manganese method, 28.8% for ammoniac nitrogen and 54.4% for T-P.

Growth of $PbMg_{1/3}Nb_{2/3}O_3$ Single Crystals by Flux Method (융제법에 의한 $PbMg_{1/3}Nb_{2/3}O_3$단결정 성장)

  • 임경연;박찬석
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 1997
  • A perovskite relaxor ferroelectrics PMN is used as an important material to investigate the diffusive phase transition phenomena. In this study PMN single crystals were grown and the microstructure were observed. For the growth of PMN single crystals, the spontaneous nucleation technique and the TSSG technique were used. 2-5mm single crystals were grown from PbO self flux and it was observed that only PMN crystals were grown when excess MgO was added over 100% as flux. Single crystals with well developed (001) faces were obtained from PbO-B2O3 flux. single crystals larger than 1 cm were grown from PbO-B2O3 flux by TXXG technique. For higher quality crystals, optimization of the variables such as the rotation speed of seed crystal, the orientation of seed crystal, and cooling rate is needed. With grown crystals, it was confirmed by TEM diffraction pattern of thin plate crystal that the 1:1 ordering of Mg2+ and Nb5+ with small volume exists.

  • PDF

Temperature Effect in the process of DAF as pretreatment of SWRO (해수담수화 전처리로서 DAF공정에서 고온의 해수에 대한 영향 특성)

  • Park, Hyunjin;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • Flocculation and flotation are used as pretreatment steps prior to the reverse osmosis (RO) process. During seawater treatment, high temperature can change the water chemistry of seawater during the process of coagulation. It also affects bubble volume concentration (BVC) and bubble characteristics. Coagulants such as alum and ferric salts at $40^{\circ}C$ can also change flux rates in the seawater reverse osmosis (SWRO) process. In this study, the bubble characteristics in dissolved air flotation (DAF), used as a SWRO pretreatment process, were studied in synthetic seawater at $20^{\circ}C$ and $40^{\circ}C$. The flux of an RO membrane was monitored after dosing the synthetic seawater with coagulants at different temperatures. Results showed that BVC increases as the operating pressure increases and as the salt concentration decreases. The bubble size released at $40^{\circ}C$ is far smaller than that at $20^{\circ}C$The addition of a ferric salt is effective for turbidity removal in synthetic seawater at $20^{\circ}C$; it is more effective than alum. When synthetic seawater was dosed with a ferric salt, the RO membrane flux increased by 27 % at $40^{\circ}C$.