• 제목/요약/키워드: Volume Flow-rate

검색결과 1,180건 처리시간 0.026초

이중관 내부 나노유체의 유동방향 영향에 관한 연구 (A Study on the Effect of Nanofluids Flow Direction in Double Pipe)

  • 최훈기;임윤승
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.82-91
    • /
    • 2021
  • We compared the heat transfer characteristics of the parallel and the counterflow flow in the concentric double tube of the Al2O3/water nanofluids using numerical methods. The high- and low-temperature fluids flow through the inner circular tube and the annular tube, respectively. The heat transfer characteristics according to the flow direction were compared by changing the volume flow rate and the volume concentration of the nanoparticles. The results showed that the heat transfer rate and overall heat transfer coefficient improved compared to those of basic fluid with increasing the volume and flow rate of nanoparticles. When the inflow rate was small, the heat transfer performance of the counterflow was about 22% better than the parallel flow. As the inflow rate was increased, the parallel flow and the counterflow had similar heat transfer rates. In addition, the effectiveness of the counterflow increased from 10% to 22% rather than the parallel flow. However, we verified that the increment in the friction factor of the counterflow is not large compared to the increment in the heat transfer rate.

다수의 계수구역간의 검사체적을 이용한 소형 세포농도센서 (Micro Cell Counter Using a Fixed Control Volume Between Double Electrical Sensing Zones)

  • 이동우;이소연;조영호
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1615-1620
    • /
    • 2005
  • We present a novel flow-rate independent cell counter using a fixed control volume between double electrical sensing zones. The previous device based on the single electrical cell sensing in a given flow-rate requires an accurate fluid volume measurement or precision flow rate control. The present cell counter, however, offers the flow-rate independent method for the cell concentration measurement with counting cells in a fixed control volume of $22.9{\pm}0.98{\mu}{\ell}$. In the experimental study, using the RBC (Red Blood Cell), we have compared the measured RBC concentrations from the fabricated devices with those from Hemacytometer. The previous and present devices show the maximum errors of $20.3\%\;and\;16.1\%$, which are in the measurement error range of Hemacytometer (about $20\%$). The present device also shows the flow-rate independent performance at the constant flow-rates ($5{\mu}{\ell}/min$ and $10{\mu}{\ell}/min$) and the varying flow-rate (4, 2, and $4{\mu}{\ell}/min$). Therefore, we demonstrate that the present cell counter is a simple and automated method for the cell concentration measurement without requiring an accurate fluid measurement and precision flow-rate control.

대기오염 입자의 인체 호흡기내 비대칭 국부침전 특성에 관한 연구 (Study on the Asymmetric Regional Deposition of Airborne Pollutant Particles in the Human Respiratory Tract)

  • 구재학;김종숭
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.551-560
    • /
    • 2003
  • Particle deposition in human lungs was investigated theoretically by using asymmetric five-lobe lung model. The volumes of each of the five lobes were different, thereby forming an asymmetric lung structure. The tidal volume and flow rate of each lobe were scaled according to lobar volume. The total and regional deposition with various breathing patterns were calculated by means of tracking volume segments and accounting for particle loss during inhalation and exhalation. The deposition fractions were obtained for each airway generation and lung lobe, and dominant deposition mechanisms were investigated for different size particles. Results show that the tidal volume and flow rate have a characteristic influence on particle deposition. The total deposition fraction increases with an increase in tidal volume for all particle sizes. However, flow rate has dichotomous effects: a higher flow rate results in a sharp increase in deposition for large size particles, but decreases deposition for small size particles. Deposition distribution within the lung shifts proximally with higher flow rate whereas deposition peak shifts to the deeper lung region with larger tidal volume. Deposition fraction in each lobe was proportional to its volume. Among the three main deposition mechanisms, diffusion was dominant for particles < 0.5 ${\mu}{\textrm}{m}$ whereas sedimentation and impaction were most influential for larger size particles. Impaction was particularly dominant for particles> 8 ${\mu}{\textrm}{m}$. The results may prove to be useful for estimating deposition dose of inhaled pollutant particles at various breathing conditions.

플라즈마 디스플레이 패널(Plasma Display Panel) 텔레비전에서의 냉각 소음 저감

  • 김규영;최민구;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.719-724
    • /
    • 2003
  • The present experimental study deals with noise reduction and improvements in cooling performance in a plasma display panel(PDP) television (TV). To reduce the noise, the effects of installation parameters are studied. The experimental parameters under investigation are the distance between the fan and the rear case of a PDP TV, position of the strut on the fan, and the fan RPM. The variance of RPM is the most significant facto., and a 250 RPM decrease from 910 RPM causes about 4㏈(A) reduction in the system noise. To increase performance, flow characteristics are investigated by using a visualization technique and measuring the volume flow rate. The visualized results show that a radial direction flow due to large system resistance is significant, and an axial velocity oscillation is observed from the measurement of the volume flow rate. To prevent both a radial direction flow and an axial velocity oscillation, sponges are inserted in the space between f3n and the rear case. Inserted sponges improve the volume flow rate of cooling fans up to 32% since they convert a radial direction flow to an axial direction flow. Also an axial velocity oscillation with large amplitude and low RPM disappears. Increasing volume flow rate causes the PDP TV to improve its cooling performance. Additionally the same volume flow rate can be obtained with a decreased fan speed due to the inserted sponge. Noise reductions of 4.2 ㏈(A) at the rear and 1.1 ㏈(A) at the front of the TV are obtained by the decreased RPM. An increase of 10% of the volume flow rate is also achieved by inserting sponges.

  • PDF

실험에 의한 직교류홴의 유량 및 소음 분석 (Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan)

  • 안철오;류호선
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF

Study on Calibration Methods of Discharge Coefficient of Sonic Nozzles using Constant Volume Flow Meter

  • 정완섭;신진현;강상백;박경암;임종연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.17-17
    • /
    • 2010
  • This paper address technical issues in calibrating discharge coefficients of sonic nozzles used to measure the volume flow rate of low vacuum dry pumps. The first challenging issue comes from the technical limit that their calibration results available from the flow measurement standard laboratories do not fully cover the low vacuum measurement range although the use of sonic nozzles for precision measurement of gas flow has been well established in NMIs. The second is to make an ultra low flow sonic nozzlesufficient to measure the throughput range of 0.01 mbar-l/s. Those small-sized sonic nozzles do not only achieve the noble stability and repeatability of gas flow but also minimize effects of the fluctuation of down stream pressures for the measurement of the volume flow rate of vacuum pumps. These distinctive properties of sonic nozzles are exploited to measure the pumping speed of low vacuum dry pumps widely used in the vacuum-related academic and industrial sectors. Sonic nozzles have been standard devices for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two small-sized sonic nozzles of diameter 0.03 mm and 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter (CVFM) readily set up in the Vacuum center of KRISS was used to calibrate the discharge coefficients of the machined nozzles. The calibration results were shown to determine them within the 3% measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process. Both calibrated sonic nozzles are demonstrated to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of low vacuum dry pumps in the semiconductor and flat display processes.

  • PDF

공동주택의 세대별 균등 배기량을 확보 하는 제어방법에 관한 연구 (Control Method to Ensure Uniform Exhaust Function by Household of Apartment House)

  • 권용일
    • 설비공학논문집
    • /
    • 제29권12호
    • /
    • pp.628-637
    • /
    • 2017
  • This study was conducted to present an effective control method for the common duct system to uniformly discharge volume flow rate exhausted from the kitchen and bathroom of each household in an apartment regardless of the position of household. Since the common duct system is installed vertically and the ventilator is installed in the terminal, the static pressure of each household decreases when vertical height increases. Therefore, the volume flow rate exhausted from each household is different. In order to improve such a phenomenon, a constant air volume damper shall be installed in a branch duct coupled with a common vertical duct system. The selected ventilator should also be able to handle the maximum volume flow rate considering diversity factor. Therefore, a uniform volume flow rate must be exhausted from all households where the hood is operated. This paper mainly focuses on suggestion of an optimum exhaust control method by comparing exhaust performance of each household according to the presence or absence of a constant air volume damper.

Cherepnov 송수기에 대한 배수제어방식의 실험적 특성 (Experimental Characteristic of Drain Control to Cherepnov Water Lifter)

  • 박성천;이강일
    • 한국농공학회지
    • /
    • 제39권6호
    • /
    • pp.67-79
    • /
    • 1997
  • The perpose of this study was to suggest the experimental characteristic of the Cherepnov Water Lifter following the drain mode. The Cherepnov Water Lifter(CWL), which is powered by the potential energy of water, can be set to operate automatically when the water m a tank is drained. In this study, a CWL is constructed in the valve drain controlling mode(VCM) and the siphon drain controlling mode(SCM), and a pressure transducer is installed. It was found that, in the VCM, intake flow volume is proportional to both delivery flow volume and drain flow volume. In the SCM, intake flow volume is proportional to drain flow volume, and the average delivery rate is proportional to both efficiency and the water utilization ratio. Also, in the VCM, the water utilization ratio is 35~49%, efficiency is 62~9O%, average delivery rate is 12.8~81.2$cm^3$/s, and the average drain rate is 14.O~91.5c$cm^3$/s. On the contrary in the SCM, the water utilization ratio is 1.7~38%, efficiency is 3~58%, average delivery rate is 3.1 ~69.2$cm^3$/s, and the average drain rate is shown as 114.5~ 183$cm^3$/s. As a result of the water utilization ratio, efficiency, average delivery rate, and average drain rate are compared, the VCM is found to be superior and the more economical mode. However, the VCM requires manpower and electricity to operate the electronic machinery involved, while the SCM requires no manpower or electricity at all. An economic evaluation of these differences will be necessary in the future. Also, in the SCM, studies to improve water utilization ratio and efficiency, to find the optimum height of the siphon for decreasing the average drain rate, and to determine the radius of curvature of throat have to be conducted in advance, since a large flow rate is drained during the priming action of the siphon.

  • PDF

물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발 (Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor)

  • 김덕진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

부상화염에서 노즐직경과 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구 (The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Nozzle Diameter and Fuel Injection Flow Rate for a Liftoff Flame)

  • 하지수;김태권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.250-258
    • /
    • 2010
  • 부상화염에서 노즐직경과 연료유량을 변화하면서 화염전파속도와 연료과농영역, 연료희박영역, 확산화염 영역에서의 체적연소반응속도의 변화 특성을 수치해석을 통하여 살펴보았다. 본 연구에서 사용한 3가지 연료노즐 직경(d=0.25, 0.30, 0.35mm)에서 연료분출속도를 증가시키면 화염전파속도가 증가하지만 변화폭은 4.3%를 넘지 않는다. 연료분출속도를 증가함에 따른 연료량 증가는 직접적이고 선형적으로 체적연소반응속도에 연관되어 있음을 알 수 있었고, 따라서 부상화염에서 연료량의 증가는 화염전파속도 보다 체적연소반응속도가 연료량 변화에 대응함을 알 수 있었다.