• 제목/요약/키워드: Volume Axial

검색결과 370건 처리시간 0.031초

Characteristics Analysis of a Novel Segmental Rotor Axial Field Switched Reluctance Motor with Single Teeth Winding

  • Wang, Bo;Lee, Dong-Hee;Lee, Chee-Woo;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.852-858
    • /
    • 2014
  • A novel 12/10 axial field switched reluctance motor (AF-SRM) is proposed for cooling fan applications in this paper. Unlike from conventional structures, the proposed motor uses the axial field instead of the radio field, the rotor is constructed from a series of discrete segments, and the stator poles are constructed from two types of stator poles: exciting and auxiliary poles. This concept improves the torque capability of a previous design by reducing the copper volume, which leads to a higher efficiency. To verify the proposed structure, the finite element method (FEM) and Matlab-Simulink are employed to get characteristics of the proposed SRM. Finally, a prototype of the proposed motor was tested for characteristic comparisons.

환기용 축류송풍기의 유동해석 및 모터 위치에 따른 성능 특성 연구 (Flow Analysis and Performance Evaluation of a Ventilation Axial-Flow Fan Depending on the Position of Motor)

  • 김재우;김진혁;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.25-30
    • /
    • 2010
  • Flow analysis and performa nce evaluation have been performed for a ventilation axial-flow fan with different positions of the motor. Two different positions of motor have been tested; one is in front of the impeller and the other is behind the impeller. Flow analyses are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations through a finite-volume solver. Preliminary numerical calculations are carried out to test the performances of different turbulence models, i.e., SST model, k-$\omega$ model, and k-$\varepsilon$ model with and without using empirical wall function in the flow analysis. The validation of numerical analyses has been performed in comparison with the experimental data. The numerical results for the performance characteristics of the ventilation axial-flow fan with two different positions of the motor have been presented.

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion

  • Jia-Qin Xu;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.325-335
    • /
    • 2023
  • The missile is affected by both spinning and axial motion during its movement, which will have a very adverse impact on the stability and reliability of the missile. This paper regards missiles as cylindrical shell structures with spinning and axial motion. In this article, the forced vibration of carbon nanotube-reinforced composites (CNTRCs) cylindrical shells with spinning motion and axial motion is investigated, in which the clamped-clamped and simply-simply supported boundary conditions are considered. The displacement field is described by the first-order shear theory, and the vibration equation is deduced by using the Euler-Lagrange equation, after dimensionless processing, the dimensionless equation of motion is obtained. The correctness of this paper is verified by comparing with the results of the existing literature, in which the simply-simply supported ends are taken into account. In the end, the effects of different parameters such as spinning velocity, axial velocity, carbon nanotube volume fraction, length thickness ratio and load position on the resonance behavior of cylindrical shells are given. It can be found that these parameters can significantly change the resonance of axially moving and rotating moving CNTRCs cylindrical shells.

다축경편 복합재료 물성의 스티칭 효과 (Predictions of elastic properties of stitched multi-warped knitted composites)

  • 김형우;전흥재;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.125-129
    • /
    • 2005
  • A micromechanical model for predicting the elastic constants of stitched multi-axial warp knitted (MWK) composite is developed. The averaging method is used to obtain effective properties of stitched MWK fabric composites. In the analysis, a representative volume of the MWK fabric composite is identified. The geometric limitations, effects of stitching yarns and design parameters of MWK fabric composites are considered in the model. Then, the elastic properties of stitched MWK fabric composites are predicted. Finally, the predicted elastic constants are validated by comparison with experimental data. The predicted results are in fair agreement with the experimental results.

  • PDF

피스톤 링갭이 링거동 및 오일소모에 미치는 영향 (Effect of Piston Ring Gap on the Axial Motion of Piston Ring and Oil Consumption)

  • 민병순;김중수;최재권
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.197-204
    • /
    • 1997
  • In order to investigate the relationship between the ring gap ratio and oil consumption, the axial motion of piston ring was measured by capacitance technique. The pressures of each land and the motions of each ring were calculated by orifice-volume method in which it is assumed that the ring gaps are the only gas leakage paths. The calculated results were compared with the measured ones. Consequently, it is known that the increase of ring gap ratio has the effect of lifting the first ring. The calculated results were roughly in accordance with those measured. Therefore, it is possible to predict the effect of design variables on the pattern of ring motion. It is known that the lift off of first ring accompanied by the increase of ring gap ratio make rise of oil consumption.

  • PDF

줄-톰슨 극저온 냉각기용 벨로우즈의 변형해석 (Deformation Analysis of Self-regulating Bellows in Joule-Thomson Cryocooler)

  • 이상은;이태원
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.100-107
    • /
    • 2008
  • Bellows is an important component in Joule-Thomson cryocooler, which minimize the excessive flow of the cryogenic gas. The bellows is made of Monel 400 and its geometry is an axial symmetric shell. During cool-down process, the pressure and volume within bellows must be satisfied with Benedict-Webb-Rubin state equation. Moreover, Poisson's ratio of Monel 400 is nearly constants, but its Young's modulus varies for a drop in temperature. Under these conditions, bellows contracts in the axial direction like a spring. To evaluate deformation of bellows at cryogenic temperature, the numerical calculation of the volume within bellows and finite element analysis are iteratively used in this research. the numerical results show that deformation of the bellows is approximately linear for change of temperature.

Effect of power law index for vibration of armchair and zigzag single walled carbon nanotubes

  • Khadimallah, Mohamed Amine;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.621-632
    • /
    • 2020
  • This research deals with the study of vibrational behavior of armchair and zigzag single-walled carbon nanotubes invoking extended Love shell theory. The effects of different physical and material parameters on the fundamental frequencies are investigated. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. To discretize the governing equation in eigen-value form, wave propagation approach is developed. Complex exponential functions have been used and the axial model depends on boundary condition that has been described at the edges of carbon nanotubes to calculate the axial modal dependence. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes and current results shows a good stability with comparison of other studies.

Talairach 뇌지도의 3차원 볼륨 재구성 (Reconstruction of 3D Volume of Talairach Brain Atlas)

  • 백철화;김태우
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.409-417
    • /
    • 1999
  • Talarirach 뇌지도(atlas)는 서로 수직인 두정방향(coronal), 시상봉합방향(sagittal), 축방향(axial)의 3세트 슬라이스들로 구성되어 있으며, 뇌기능 질환진단 및 병인 분석에서 표준 뇌지도로서 그 중요성이 부각되고 있다. 특히 컴퓨터상에서 이들로부터 얻어진 3차원 디지털 볼륨 데이터는 처리결과의 가시화와 정량적 분석에서 그 응용범위가 크다. 본 노문은 Talairach 뇌지도의 3차원 볼륨 데이터 재구성에서 쌍선형(bi-linear) 보간법의 적용 방법과 삼평면(tri-planar)보간법을 제안하고, Talairach 뇌지도 편집기를 제작하여 볼륨 데이터 재구성의 문제점을 고찰하였다. 쌍선형 보간법과 뇌지도에 적용은 1세트의 슬라이스에 대하여 하나씩의 밝기값만 고려하였으며, 삼평면 보간법은 서로 수직인 3방향의 슬라이스의 노구조물 정보를 동시에 이용하였다. Talairach 뇌지도 편집기는 3방향의 슬라이스를 동일 좌표계에 동시에 시각화하여 편집할 수 있도록 하였다. 뇌지도 편집기를 이용하여 Talairach 뇌지도의 3방향의 슬라이스간의 뇌구조물의 부합이 다름을 보여줌으로써 볼륨 재구성의 문제점을 밝혔다.

  • PDF

축방향 자기베어링의 해석 및 최적설계 (Analysis and Optimal design of Axial Magnetic Bearings)

  • 박영진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.278-283
    • /
    • 1997
  • This paper proposes a systematic design method for axial(or thrust) magnetic bearings using optimal design methodology. The objective of the optimal design is to minimize bearing volume. The constraints include the bearing load capacity, linearized bearing stiffness and damping, the magnetic flux density, and geometric relations. In order to obtain design values which can be applied to fabrication of bearings, branch and bound method was introduced in the postprocessing procedure of optimal design results. Verification of the proposed design methodology was perfomed by an example.

  • PDF