• Title/Summary/Keyword: Volume/Mass

Search Result 1,451, Processing Time 0.032 seconds

An Analysis of Elementary Mathematics and Science Textbooks for Grades 3 and 4: Focused on Capacity, Volume, Weight, and Mass (초등학교 3~4학년군 수학·과학 교과서 비교 분석: 들이, 부피, 무게, 질량을 중심으로)

  • Pang, JeongSuk;Kwon, MiSun
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.617-638
    • /
    • 2017
  • In order to make a connection in teaching similar concepts between mathematics and science in teaching similar concepts, this paper analyzed the contents related to capacity, volume, weight, and mass in the mathematics and science textbooks aligned with the national elementary curriculum. We first explored when to present such topics in both textbooks, and then analyzed in what ways the topics were addressed in terms of quantitative comparison, vocabulary, units of measurement, measurement, tools for measurement, estimation, and connections to real life. The results of this study showed that there were some aspects emphasized in common both in mathematics and science textbooks. The analysis of this study also demonstrated subtle but considerable differences according to the characteristics of two subject matters. Based on these results, this paper provides implications for elementary school teachers to consider in teaching capacity, volume, weight, and mass through mathematics and science lessons.

Characteristics of Wind Flow Variation with Wing Development of Space-Reduced Damper (공간축소형 댐퍼의 날개개도에 따른 풍량변화 특성평가)

  • Baek, Geun-Uk;Baek, Nam-Do;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.113-120
    • /
    • 2021
  • An experimental device was designed to control the opening of a damper via operating the folding blade drive of the device and to control the amount of air flowing through the damper. In addition, an inverter was installed in the blower to control its fan rotation speed and hence the amount of air flowing through the damper. An experimental study was conducted on the opening of the folding blade damper and changes in the rotational speed of the blower. From the results, the theoretical air volume of the folding blade damper and experimental air volume were observed to be in good agreement within an error range of ±3%. As the mass flow rate of the air passing through the folding blade damper increases proportionally with the changes in damper opening and fan rotation speed, the performance of the damper can be controlled proportionally. The mass flow rate was also observed to increase linearly; therefore, the mass flow rate of the air passing through the folding blade damper increases proportionally with changes in the rotation speed of the blower, such that the performance of the damper is proportional to a constant air volume even with varying rotation speeds of the blower.

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir;Md Ashrafuzzaman Gulandaz;Mohammod Ali;Md Nasim Reza;Md Shaha Nur Kabir;Sun-Ok Chung;Kwangmin Han
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.1
    • /
    • pp.63-77
    • /
    • 2024
  • Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

Difference in Volume Perception of Cooked White Rice according to Size and Color of Rice Bowl in Normal and Obese Women (비만 여성과 정상체중 여성의 밥그릇 크기와 색상에 따른 백미밥 인지량의 차이)

  • Hong, Yang-Hee;Kim, Dong-Geon;Hurh, Jin-Sun;Lee, Myong-Ok;Kim, Yoon-Sook;Chang, Un-Jae
    • Journal of the Korean Dietetic Association
    • /
    • v.17 no.4
    • /
    • pp.378-386
    • /
    • 2011
  • To examine the effect of obesity on volume perception according to size and color of rice bowl, we divided female college students into a normal weight group (<30% fat mass, n=100) and obese group (${\geq}30%$ fat mass, n=83) and then measured perceived volume of rice bowls of various sizes (general size; 350 ml vs. small size; 188 ml) and color (yellow, white, blue, and black) containing the same amount of cooked white rice (210 g). Normal weight group perceived that the general rice bowl contained significantly more cooked white rice compared to the small rice bowl. In contrast, the obese group perceived that the general rice bowl contained significantly less cooked white rice than the small rice bowl. The estimated variance in perceived volume of both bowls was significantly bigger in the obese group compared to the normal group. There were no differences in perceived volume among any of the subjects (both normal and obese groups) according to rice bowl color. However, the estimated variance in perceived volume in the obese group was significantly larger than that in the normal group for all of the rice bowls. In conclusion, rice bowl size and color might affect volume perception, and volume perception in obese people may be different from that of normal weight people.

An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash (플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF

Development of Random fracture network for discontinuity plane (불연속면의 확률절리망 알고리즘의 개발)

  • Ko, Wang-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.189-199
    • /
    • 2000
  • A major deficiency of laboratory testing of rock structure is that the structures are limited in size and therefore present a very small and highly selective sample of the rock mass from which were removed. In a typical engineering project, the samples tested in the laboratory represent only a very small fraction of one percent of the volume of the rock mass. In this paper, we calculate the representative orientation of the resultant vector, the measure of the degree of clustering, the volume of rock mass, the trace length of discontinuity spacing under underlying distributions. And we generate the random fracture networks using real data. We propose the calculating the trace length.

  • PDF

Morphological and Ginsenoside Differences among North American Ginseng Leaves

  • Proctor, John T.A.;Sullivan, Alan J.;Rupasinghe, Vasantha P.V.;Jackson, Chung-Ja C.
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • Leaf characteristics of mature 2, 3 and 4-year-old North American ginseng (Panax quinquefolius L.) leaves on fruiting and non-fruiting(NF) plants were studied. Leaflets of the 2-year-old plants had the lowest fresh and dry weight, area, volume and internal gas volume. Inflorescence removal in 3-year-old plants did not affect leaf characteristics or ginsenoside concentration but in 4-year-old plants it increased leaf fresh (38.6%) and dry (43.9%) weight, leaf area (29.1%), specific leaf mass (11.4%), leaf volume (43.1%), and leaf thickness (12.1%), and decreased leaf water content (6.2%). Cultivated ginseng, although an understorey plant, had the specific leaf mass, 35.6 g $m^{-2}$ (range, 36 to 39 g $m^{-2}$) and a chlorophyll a/b ratio of 2.40 to 2.61, both suggesting the ability to perform like a sunny habitat plant. Also, specific leaf mass of 35.6 g $m^{-2}$ is similar to that reported for perennial plants, 36.8 g $m^{-2}$, rather than that for annuals, 30.9 g $m^{-2}$.

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

Study of Cold Gas Propulsion System Utilizing Butane as Liquefied Propellant (부탄을 액화 연료로 사용한 냉가스 추진 시스템에 대한 연구)

  • Kang, Suk-Jin;Kwon, Ky-Beom;Cho, Dong-Hyun;Lee, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.323-328
    • /
    • 2007
  • A direct application of liquefied gas propellants to a typical small satellite cold gas propulsion system was analyzed. Performance of systems using liquefied gas propellant under consideration was compared to that of a nitrogen cold gas propulsion system. Liquefied gas propellant propulsion system's performance, required tank volume, and required propulsion system mass has been calculated at the same mass, volume, and total impulse condition of a typical nitrogen cold gas propulsion system. It was found that the liquefied gas propulsion system has advantages in performance, volume, and mass, compared to a typical nitrogen cold gas system, and can be directly applied to a cold gas propulsion system.