• 제목/요약/키워드: Volterra series model

검색결과 24건 처리시간 0.011초

C-BLRNN을 이용한 위성채널 등화기 (Satellite communication Equalizer Using Complex Bilinear Recurrent Neural Network)

  • 박동철;정태균
    • 한국통신학회논문지
    • /
    • 제25권3A호
    • /
    • pp.375-382
    • /
    • 2000
  • Equalization of satellite communication using Complex-Bilinear Recurrent Neural Network(C-BLRNN) is proposed in this pater. Since the BLRNN is based on the bilinear polynomial and it has been more effectively used in modeling highly nonlinear systems with time-series characteristics than multi-layer perception type neural networks(MLPNN) , it can be applied to satellite equalizer. the proposed C-BLRNN based equalizer for M-PSK with a channel model is compared with Volterra filter Equalizer, DFE, and conventional Complex MLPNN Equlizer. The results show that the proposed C-BLRNN based equalizer gives very favorable results in both of MSE and BER criteria over other equalizers.

  • PDF

A MODEL-ORDER REDUCTION METHOD BASED ON KRYLOV SUBSPACES FOR MIMO BILINEAR DYNAMICAL SYSTEMS

  • Lin, Yiqin;Bao, Liang;Wei, Yimin
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.293-304
    • /
    • 2007
  • In this paper, we present a Krylov subspace based projection method for reduced-order modeling of large scale bilinear multi-input multi-output (MIMO) systems. The reduced-order bilinear system is constructed in such a way that it can match a desired number of moments of multi-variable transfer functions corresponding to the kernels of Volterra series representation of the original system. Numerical examples report the effectiveness of this method.

Added resistance and parametric roll prediction as a design criteria for energy efficient ships

  • Somayajula, Abhilash;Guha, Amitava;Falzarano, Jeffrey;Chun, Ho-Hwan;Jung, Kwang Hyo
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.117-136
    • /
    • 2014
  • The increased interest in the design of energy efficient ships post IMO regulation on enforcing EEDI has encouraged researchers to reevaluate the numerical methods in predicting important hull design parameters. The prediction of added resistance and stability of ships in the rough sea environment dictates selection of ship hulls. A 3D panel method based on Green function is developed for vessel motion prediction. The effects of parametric instability are also investigated using the Volterra series approach to model the hydrostatic variation due to ship motions. The added resistance is calculated using the near field pressure integration method.

쌍선형 회귀성 신경망을 이용한 전력 수요 예측에 관한 기초연구 (A Preliminary Result on Electric Load Forecasting using BLRNN (BiLinear Recurrent Neural Network))

  • 박태훈;최승억;박동철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1386-1388
    • /
    • 1996
  • In this paper, a recurrent neural network using polynomial is proposed for electric load forecasting. Since the proposed algorithm is based on the bilinear polynomial, it can model nonlinear systems with much more parsimony than the higher order neural networks based on the Volterra series. The proposed Bilinear Recurrent Neural Network(BLRNN) is compared with Multilayer Perceptron Type Neural Network(MLPNN) for electric load forecasting problems. The results show that the BLRNN is robust and outperforms the MLPNN in terms of forecasting accuracy.

  • PDF