• 제목/요약/키워드: Voltammetric techniques

검색결과 27건 처리시간 0.025초

Voltammetric Recognition of Ca2+ by Calix[4]arene Diquinone Diacid

  • Kim, Tae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3115-3117
    • /
    • 2010
  • The voltammetric study on a water-soluble calix[4]arene-diquinone-diacid (CDA) in pH 7.4 in the presence of $Ca^{2+}$ ion provided important information about the unique electrochemical behavior of CDA-$Ca^{2+}$ complex. Using CDA, $Ca^{2+}$ ion in aqueous solution was recognized quantitatively by voltammetric techniques.

Electrooxidation of Zolpidem and its Voltammetric Quantification in Standard and Pharmaceutical Formulation using Pencil Graphite Electrode

  • Naeemy, A.;Sedighi, E.;Mohammadi, A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.68-75
    • /
    • 2016
  • In this study a new, simple, precise, accurate and economic electrochemical method was developed and validated for the voltammetric determination of zolpidem (ZP) using disposable pencil graphite (PG) electrode. The anodic oxidation of ZP on the surface of the PG electrode was examined in a britton robinson (BR) buffer. Square wave and cyclic voltammetry were used as electrochemical techniques in the potential range of 0-1.2 V in the pH 8 BR buffer. In cyclic voltammetry studies, the diffusion coefficient of ZP oxidation was found to be 3.6×10-6 cm2 s-1. On the other hand, the ZP has shown a well-defined irreversible anodic peak at 0.98 V in the square wave voltammetry mode. The PG electrode, primarily being graphite which has a large active surface area gives rise to increasing peak current with respect to ZP electrooxidation. PG electrode showed an electrocatalytic effect in anodic oxidation of ZP. A linear relationship between catalytic current response and ZP concentration was obtained over a concentration range of 10-30 μM with R.S.D. values ranging from 0.29-3.89. Limits of detection and quantitation were found to be 1 and 3 μM, respectively. Finally, the PG electrode was successfully used to determine ZP in standard and tablet dosage forms with a mean recovery of 100.69 %.

담수 및 퇴적물에 함유된 아연, 카드뮴, 납 및 구리의 산화전극 벗김 전압전류법 정량 (Anodic Stripping Voltammetric Determinations of Zinc, Cadmium, Lead and Copper in Freshwater and Sediment)

  • 한영희;유정연
    • 대한화학회지
    • /
    • 제41권4호
    • /
    • pp.180-185
    • /
    • 1997
  • 매달린 수은 방울 전극(HMDE) 또는 얇은 수은막 전극(TMFE)을 사용하여 금속이온들을 은/염화은(포화 KCl) 기준전극에 대하여 -1,200 V에서 150초 동안 전해시켜서 수은전극에 농축시키고 펄스 차이 전압전류법(DPASV)과 네모파 전압전류법(SWASV)으로 산화전극 벗김 분석을 하여 동시에 아연, 카드뮴, 납 및 구리를 정량분석하였다. HMDE를 사용하여 DPASV로 네 가지 금속이온을 동시 정량분석시 각각의 금속이온의 봉우리 전류는 20~100 ppb 농도범위에서 직선성을 보여주었으나 TMFE를 사용하여 DPASV 또는 SWASV로 네 가지 금속이온을 동시 정량분석시에는 $Cd^{2+}$$Pb^{2+}$의 봉우리 전류만 DPASV의 경우 100 ppb까지 SWASV의 경우 10 ppb까지 직선성을 나타내었다. $Cd^{2+}$$Pb^{2+}$의 동시 정량분석의 경우 TMFE를 사용한 DPASV 분석은 HMDE를 사용한 DPASV보다 약 15배 더 민감하였으며 TMFE에서 SWASV는 DPASV보다 약 5배 더 민감하였다. 퇴적물에 함유된 아연의 농도를 HMDE를 사용한 DPASV 분석법과 유도 결합 플라스마-질량분석법으로 일곱개의 시료에 대하여 정량분석하여 비교하였더니 상관계수가 0.9993으로 높았고 t-test결과 두 방법 사이에는 유의성 있는 차이가 없었다.

  • PDF

얇은막 산화철 광반도성 전극의 제조와 그 특성 (PREPARATION AND CHARACTERIZATION ON THIN FILMS OF DOPED IRON OXIDE PHOTOSEMICONDUCTIVE ELECTRODES.)

  • 김일광;김윤근;박태영;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 춘계학술대회 논문집
    • /
    • pp.104-108
    • /
    • 1993
  • Thin films of MgO-doped and CaO-doped iron oxide were prepared y spray pyrolysis. The films were characterized b X-ray diffraction, scanning electron microscopy and voltammetric techniques. The photoelectrochemical behavior of thin film electrodes depended greatly on the doping level, sintering temperature, substrate temperature and added photosensitizing compounds in solution, showed p-type photoelectrochemical behavior, while the CaO-doped iron oxide thin films prepared at low temperature showed n-type photoelectrochemical behavior. This characteristic change was interpreted in terms of the surface structure change of the thin films and doping effect of metal oxide.

  • PDF

분산된 p형 및 n형 반도체 입자의 도핑 효과와 반도체 동작 (Doping Effects and Semiconductor Behaviors of the Dispersed p- and n- type Semiconductor Particles)

  • 천장호;손광철;라극환;조은철
    • 전자공학회논문지A
    • /
    • 제31A권5호
    • /
    • pp.126-133
    • /
    • 1994
  • Doping effects and semiconductor behaviors of the dispersed p- and n-Si, p- and n- GaAs particles in the aqueous electrolyte have been studied using microelectrophoretic, voltammetric and chronoamperometric techniques. The cations (K$^{+}$) are adsorbed on both the p- and n- Si particle surfaces regardless of the sign of space charges in the depletion layers, i.e. doping profiles. The surface states are negatively charged acceptor states. On the other hand, the anions (CI$^{-}$) are adsorbed on both the p- and n- GaAs particle surfaces regardless of the sign of space charges in the depletion layers, i.e. doping profiles. The surface states are positively charged donor states. Under the same conditions, electrophoretic mobilities, electrochemical processes, doping effects and related semiconductor behaviors of the Si and the GaAs particles are similar regardless of the doping profiles, i. e. dopants and doping concentrations. The doping effects and related semiconductor behaviors of the dispersed p- and n- type semiconductor particles are gradually lost with decreasing dimensions.

  • PDF

Pt 전극 계면의 전기물리적 현상에 관한 GaAs 반도체 입자효과 (Effects of the GaAs Semiconductor Particles on Electrophysical Phenomena at the Pt Electrode Interfaces)

  • Jang Ho Chun
    • 전자공학회논문지A
    • /
    • 제31A권2호
    • /
    • pp.67-74
    • /
    • 1994
  • Effects of the GaAs semiconductor particles on electrophysical phenomena at the Pt electrode/10S0-3TM KCl aqueous electrolyte interfaces have been studied using voltammetric time based and electrochemical impedance techniques. The anodic decomposition effect f the GaAs semiconductor particles on electrophysical phenomena was significantly observed during the positive potential scan (0 to 1.0 V vs. SCE). On the other hand, the cathodic decomposition effect of the GaAs semiconductor particles was negligible during thenegative potential scan (0 to -1.0 V vs. SCE). The GaAs semiconductor particles act as current activators or mediators during the anodic process and act as charge screens during the cathodic process. The electrolyte resistance and related impedance was increased due to the presence of the GaAs semiconductor particles. The anodic decomposition effect of the GaAs semiconductor particles can directly be applied to activate the hydrogen evolution.

  • PDF

Electrochemical Diagnosis of Magnesium Ion in Fish Liver and Mice Droppings

  • Lee, Chang-Hyun;Ly, Suw Young
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.663-668
    • /
    • 2014
  • An in-vivo diagnosis of trace Mg(II) ion was performed using a low-cost and environment-friendly voltammetric method, using a graphite counter and reference electrodes and a fluorine-immobilized graphite working electrode, and clean deep seawater was used as an electrolyte solution. Under optimum conditions, the analytical working ranges attained microgram ranges, and a detection limit of $80.6ugL^{-1}$ was obtained using stripping voltammety with 60 sec accumulation time. Ex-vivo application was performed on fish liver and mice droppings. The developed techniques can be applicable to tumor cell analysis.

Electrochemical Study of Poly(aniline N-alkylsulfonate)s

  • Kim, Eunkyoung;Rhee, Suh Bong
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.631-636
    • /
    • 1995
  • Electrochemical properties of self-dopable poly(aniline N-butylsulfonate)s in various acidic medium were investigated by spectroelectrochemical techniques. Cyclic voltammetric study showed more than two reversible process of one electron transfer, the potential and peak intensity of which were dependent on the acid concentration and dopant ion. Spectroscopic study at different oxidation level indicated that the electrochromic switching of the poly(aniline N-alkylsulfonate)s film involves structural changes from benzenoid ring to quinoid ring. Spectrocyclic voltammetry together with impedance spectra of the PANBUS film in 0.1 M $LiClO_4$ solution of acetonitrile containing 0.46 M of perchloric acid showed two types of highly conductive states at the intermediate oxidation levels, which can be related to the metallic polaron states doped by two different process.

  • PDF

수돗물의 pH가 동관의 부식에 미치는 영향 (The Influence of pH on Corrosion Behavior of Copper Tubes in Tap Water)

  • 민성기;나승찬;황운석
    • Corrosion Science and Technology
    • /
    • 제8권6호
    • /
    • pp.232-237
    • /
    • 2009
  • Copper tubes are widely used in the distribution systems of drinking water throughout the world because of their excellent corrosion resistance, high thermal conductivity, and ease of fabrication. However, corrosion problems from copper tubes as blue water phenomenon and leakage have been reported appreciably. The effect of pH on the corrosion behavior of copper tube for tap water was investigated by electrochemical voltammetric techniques in synthetic tap water. And the copper corrosion cases were discussed from the viewpoint of factors affecting the corrosion rate such as pH, alkalinity, LSI(Langelier Saturation Index), and concentration of bicarbonate and dissolved carbon dioxide.

pH-Dependent Electrochemical Behavior of N-Monosubstituted-4,$4^{\prime}$-Bipyridinium Ions

  • Park, Joon-woo;Kim, Yuna;Lee, Chong-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.896-900
    • /
    • 1994
  • The pH-dependent reduction behavior of N-monosubstituted-4,4'-bipyridinium ions ($RBPY^+: R=methyl(C_1)$; benzyl; n-octyl; n-dodecyl) has been investigated by electrochemical and spectroelectrochemical techniques. At acidic condition, $RBPY^+$ is protonated and the protonated species are reduced by two consecutive one-electron processes. The $2e^-$ reduced species undergoes a chemical reaction with $H^+$. The second-order rate constant $(k_H)$ of the homogeneous chemical process is $(3.7{\pm}0.3){\times}10^3M^{-1}s^{-1}$ for the two electron reduction product of $C_1BPY^+$. At high pH, the electrode reduction of $RBPY^+$ is one-step $2e^-$ transfer process with concomitant addition of $H^+$, which is confirmed by cyclic voltammetric study using a microdisk electrode.