• 제목/요약/키워드: Voltammetric determination

검색결과 78건 처리시간 0.018초

$Ph_2O_2S_3$로 변성된 탄소반죽전극에 의한 Ag(I) 이온의 전압-전류법적 정량 (Voltammetric Determination of Ag(I) ion using Carbon Paste Electrode Modified with $Ph_2O_2S_3$)

  • 이인종
    • 분석과학
    • /
    • 제12권2호
    • /
    • pp.171-175
    • /
    • 1999
  • Carbon paste electrodes, modified with podands containing more than two sulfur atoms, have been employed for the voltammetric determination of Ag(I) ion from aqueous solution. The voltammetric response was characterized with respect to paste composition, preconcentration method, kind of anion, variation of pH, Ag(I) ion concentration, and possible interferences. Linear calibration curves were obtained for Ag(I) ion concentration ranging from $1.0{\times}10^{-6}$ to $9.0{\times}10^{-5}M$, and detection limit was $5.0{\times}10^{-7}M$.

  • PDF

주게원자로 산소와 질소를 포함하는 거대고리 리간드로 변성된 탄소반죽전극에 의한 Ag(I) 이온의 전압-전류법적 정량 (Voltammetric Determination of Ag(I) ion with Carbon Paste Electrode Modified with Macrocyclic Ligand Containing Oxygen and Nitrogen as Ligating Atoms)

  • 이인종
    • 분석과학
    • /
    • 제15권1호
    • /
    • pp.91-95
    • /
    • 2002
  • Carbon paste electrodes, modified with 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadeca-5,14-diene containing different ligating atoms of oxygen and nitrogen, have been employed for the voltammetric determination of Ag(I) ion from aqueous solution. The voltammetric response was characterized with respect to paste composition, preconcentration method, kind of anion, variation of pH, Ag(I) ion concentration, and possible interferences. Linear calibration curves were obtained for Ag(I) ion concentration ranging from $3.0{\times}10^{-6}M$ to $8.0{\times}10^{-5}M$, and detection limit was $8.5{\times}10^{-7}M$.

Electrochemical Behavior of Norfloxacin and Its Determination at Poly(methyl red) Film Coated Glassy Carbon Electrode

  • Huang, Ke-Jing;Xu, Chun-Xuan;Xie, Wan-Zhen
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권5호
    • /
    • pp.988-992
    • /
    • 2008
  • A poly(methyl red) film-modified glassy carbon electrode (PMRE) was fabricated for determination of norfloxacin (NFX). The electrochemical behavior of NFX was investigated and a well-defined oxidation peak with high sensitivity was observed at the film electrode. PMRE greatly enhanced the oxidation peak current of NFX owing to the extraordinary properties of poly(methyl red) film. Based on this, a sensitive and simple voltammetric method was developed for measurement of NFX. A sensitive linear voltammetric response for NFX was obtained in the concentration range of $1\;{\times}\;10^{-6}\;-\;1\;{\times}\;10^{-4}$ mol/L and the detection limit was $1\;{\times}\;10^{-7}$ mol/L using linear sweep voltammetry (LSV). The proposed method possessed advantages such as low detection limit, fast response, low cost and simplicity. The practical application of this new analytical method was demonstrated with NFX pharmaceuticals.

Electrochemical Determination of Ciprofloxacin Based on the Enhancement Effect of Sodium Dodecyl Benzene Sulfonate

  • Zhang, Shenghui;Wei, Shuang
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.543-546
    • /
    • 2007
  • Herein, a new electrochemical method was described for the determination of ciprofloxacin based on the enhancement effect of an anionic surfactant: sodium dodecyl benzene sulfonate (SDBS). In pH 4.0 phosphate buffer and in the presence of 1.0 × 10-4 mol/L SDBS, ciprofloxacin yields a well-defined and sensitive oxidation peak at the carbon paste electrode (CPE). Compared with that in the absence of SDBS, the oxidation peak current of ciprofloxacin remarkably increases in the presence of SDBS. The experimental parameters, such as supporting electrolyte, concentration of SDBS, and accumulation time, were optimized for ciprofloxacin determination. The oxidation peak current is proportional to the concentration of ciprofloxacin over the range from 8.0 × 10-8 to 5.0 × 10-6 mol L-1. The detection limit is 2.0 × 10-8 mol L-1 after 2 min of accumulation. This new voltammetric method was successfully used to detect ciprofloxacin in drugs.

수은 전극에서 루비안산의 전압-전류 거동 및 정량 (Voltammetric Behavior and Determination of Rubeanic acid at Mercury)

  • 권영순;구희진
    • 분석과학
    • /
    • 제10권3호
    • /
    • pp.216-224
    • /
    • 1997
  • 순환 전압-전류 그림에서 루비안산의 전기화학적 행동을 조사해 보면, 루비안산은 두 개의 환원 봉우리가 나타나는데, 첫번째 봉우리는 $S^{2-}$ 봉우리와 일치하므로 HgS 생성에 의한 환원 봉우리이며, 두번째 봉우리는 매우 약하며 확인되지 않았다. 시차 펄스 음극 벗김 전압-전류법으로 미량의 루비안산을 정량하는 방법을 고찰하였다. 루비안산의 정량을 위하여 pH 10.0, 붕산염 완충용액을 사용하였고, 최적 조건은 붕산염 완충용액의 농도 0.05M, 축적전위 -0.30V, 축적시간 120초, 그리고 주사속도 10mV/sec이다. 이 때 루비안산의 검출 한계는 $2.7{\times}10^{-8}M$이다.

  • PDF

Square Wave Voltammetric Determination of Indole-3-acetic Acid Based on the Enhancement Effect of Anionic Surfactant at the Carbon Paste Electrode

  • Zhang, Sheng-Hui;Wu, Kang-Bing
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권9호
    • /
    • pp.1321-1325
    • /
    • 2004
  • Sodium dodecyl sulfate (SDS), an anionic surfactant, can strongly adsorb at the surface of a carbon paste electrode (CPE) via the hydrophobic interaction. In pH 3.0 $Na_2HPO_4$-citric acid buffer (Mcllvaine buffer) and in the presence of SDS, the cationic indole-3-acetic acid (IAA, $pK_a$ = 4.75) was highly accumulated at the CPE surface through the electrostatic interaction between the negative-charged head group of SDS and cationic IAA, compared with that in the absence of SDS. Hence, the oxidation peak current of IAA increases greatly and the oxidation peak potential shifts towards more negative direction. The experimental parameters, such as pH, varieties of surfactants, concentration of SDS, and scan rate were optimized for IAA determination. The oxidation peak current is proportional to the concentration of IAA over the range from $5\;{\times}\;10^{-8}$ mol/L to $2\;{\times}\;10^{-6}$ mol/L. The detection limit is $2\;{\times}\;10^{-8}$ mol/L after 3 min of accumulation. This new voltammetric method was successfully used to detect IAA in some plant leaves.

Adsorptive Behavior of Catechol Violet and Its Thorium Complex on Mercury Electrode in Aqueous Media

  • Rabia Mostafa K. M.
    • 전기화학회지
    • /
    • 제7권1호
    • /
    • pp.9-15
    • /
    • 2004
  • Cyclic voltammetry and chronocoulometry have been used for characterization of catechol violet (CV) at the hanging mercury drop electrode in acetic acid-sodium acetate buffer solution. At pH 2.94 a nearly symmetric cyclic voltammetric wave due to an irreversible weak adsorption of CV on mercury was obtained at concentration of $0.53{\mu}mol\;dm ^{-3}$. Under these conditions, CV adsorbes in a monolayer. Upon increasing the concentration, the symmetry of the wave decreases; it can be attributed to a mixed diffusion adsorption process. The amount of the adsorbed catechol violet on the HMDE expressed as surface concentration as well as the surface areaf occupied by one molecule$(\sigma)$ were calculated. It was found that the values obtained for f and o utilizing cyclic voltammetric and chrono-coulometry are almost identical. A 1:1 and 1:2 Th (IV)-CV complexes are formed on addition of thorium (IV) to catechol violet. These complexes are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free CV, Using the square-wave (SW) technique, the adsorptive cathodic stripping voltammetry, ACSV, of these complexes was studied. It was found that the SW-ACSV of Th(IV)-CV can be applied to the determination of thorium at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed.

Cathodic Stripping Voltammetry법에 의한 식물체 중 극미량 셀렌의 분석 (Determination of Traces of Selenium in Plant Materials by Cathodic Stripping Voltammetry)

  • 문동철;홍성화;박만기;김중기;이광우
    • 약학회지
    • /
    • 제29권3호
    • /
    • pp.144-151
    • /
    • 1985
  • Cathodic stripping voltammetric determination of traces of selenium in plant samples was studied. Stripping peak of selenium (IV) from Cu-Se intermettalic deposit in acidic media containing copper (II) ion is specific, highly sensitive and well defined, is successfully used for the quantitative determination of selenuin down to the level of 1ng/ml. Sample is burnt in a calorimeter bomb under the oxygen pressure of 40atm. and the selenium is absorbed in 0.1M NaOH. After the solution is filtrated, concentrated and acidified with HCl, then passed through a column of cation exchange resin in the $H^{+}$ form(Dowex 50X-8). The column eluate is analyzed for selenium by differential pulse cathodic stripping voltammetric method. Analytical results of selenium for NBS SMR is well agreement with the certified values. Results are given for a series of plant materials.

  • PDF

Determination of Hydrogen Peroxide on Modified Glassy Carbon Electrode by Polytetrakis(2-aminophenyl)porphyrin Nanowire

  • Jeong, Hae-Sang;Kim, Song-Mi;Seol, Hee-Jin;You, Jung-Min;Jeong, Eun-Seon;Kim, Seul-Ki;Seol, Kyung-Sik;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2979-2983
    • /
    • 2009
  • Nanowires of polytetrakis(o-aminophenyl)porphyrin (PTAPPNW) were fabricated by electrochemical polymerization with the cyclic voltammetric method in anodic aluminum oxide (AAO) membranes. The glassy carbon electrode (GCE) modified by PTAPPNW, single-walled carbon nanotubes (SWNT) and Nafion as a binder was investigated with voltammetric methods in a phosphate buffer saline (PBS) solution at pH 7.4. The PTAPPNW + SWNT + Nafion/GCE exhibited strongly enhanced voltammetric and amperometric sensitivity towards hydrogen peroxide ($H_2O_2$), which shortened the response time and enhanced the sensitivity for $H_2O_2$ determination at an applied potential of 0.0 V by amperometric method. The PTAPPNW + SWNT + Nafion/GCE can be used to monitor $H_2O_2$ at very low concentrations in biological pH as an efficient electrochemical $H_2O_2$ sensor.

Simultaneous Voltammetric Determination of Mefenamic Acid and Paracetamol using Graphene Nanosheets/Nickel Oxide Nanoparticles Modified Carbon Paste Electrode

  • Naeemy, Ali;Gholam-Shahbazi, Rozhina;Mohammadi, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.282-293
    • /
    • 2017
  • A new modified carbon paste electrode (CPE) was constructed based on nickel oxide nanoparticles (NiONPs) and graphene nanosheets (Gr) for simultaneous determination of paracetamol (PCM) and mefenamic acid (MFA) in aqueous media and pharmaceutical dosage forms. NiONPs were synthesized via a simple and inexpensive technique and characterized using X-ray diffraction method. Scanning electron microscopy was used for the characterization of the morphology of modified carbon paste electrode (NiONPs/Gr/CPE). Voltammetric studies suggest that the NiONPs and Gr provide a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the NiONPs/Gr/CPE surface. Using cyclic voltammetry, the NiONPs/Gr/CPE showed good sensitivity and selectivity for the determination of PCM and MFA in individually or mixture standard samples in the linear range of $0.1-30{\mu}g\;mL^{-1}$. The resulted limit of detection and limit of quantification were 20 and $60ng\;mL^{-1}$ for PCM, 24 and $72ng\;mL^{-1}$ for MFA, respectively. The analytical performance of the NiONPs/Gr/CPE was evaluated for the determination of PCM and MFA in pharmaceutical dosage forms with satisfactory results.