• Title/Summary/Keyword: Voltage-sag suppression

Search Result 4, Processing Time 0.016 seconds

Analysis on Voltage Sag According to Impedance and Application Location of SFCL with Recloser-Recloser Coordination (재폐로차단기간 보호협조 동작시 초전도한류기 적용위치 및 임피던스에 따른 순간저전압 분석)

  • Kim, Yi-Gwan;Noh, Shin-Eui;Kim, Jin-Seok;Kim, Jae-Chul;Lim, Sung-Hun;Kim, Hye-Rim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.230-236
    • /
    • 2014
  • Superconducting fault current limiter (SFCL) has been expected as one of more effective solutions for decreasing fault current instantaneously and various types of SFCLs have been developed to apply into real power system. Recently, the application of the SFCL in a power distribution system has been reported to be contributed to the suppression of the voltage sag as well as the limitation of the fault current. However, the suppressing effect of voltage sag by the SFCL depends on component of its impedance and its application location in a power distribution system considering the recloser-recloser coordination. This paper analyzed the voltage sag caused by recloser-recloser coordination in a power distribution system and the suppression of the voltage sag due to the application location of the SFCL in a power distribution system was discussed through the PSCAD/EMTDC simulation.

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

A Four-Channel Laser Array with Four 10 Gbps Monolithic EAMs Each Integrated with a DBR Laser

  • Sim, Jae-Sik;Kim, Sung-Bock;Kwon, Yong-Hwan;Baek, Yong-Soon;Ryu, Sang-Wan
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.533-536
    • /
    • 2006
  • A distributed Bragg reflector (DBR) laser and a high speed electroabsorption modulator (EAM) are integrated on the basis of the selective area growth technique. The typical threshold current is 4 to 6 mA, and the side mode suppression ratio is over 40 dB with single mode operation at 1550 nm. The DBR laser exhibits 2.5 to 3.3 mW fiber output power at a laser gain current of 100 mA, and a modulator bias voltage of 0 V. The 3 dB bandwidth is 13 GHz. A 10 Gbps non-return to zero operation with 12 dB extinction ratio is obtained. A four-channel laser array with 100 GHz wavelength spacing was fabricated and its operation at the designed wavelength was confirmed.

  • PDF