• Title/Summary/Keyword: Voltage-mode control

Search Result 887, Processing Time 0.021 seconds

Individual DC Voltage Balancing Method at Zero Current Mode for Cascaded H-bridge Based Static Synchronous Compensator

  • Yang, Zezhou;Sun, Jianjun;Li, Shangsheng;Liao, Zhiqiang;Zha, Xiaoming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.240-249
    • /
    • 2018
  • Individual DC voltage balance problem is an inherent issue for cascaded H-bridge (CHB) based converter. When the CHB-based static synchronous compensator (STATCOM) is operating at zero current mode, the software-based individual DC voltage balancing control techniques may not work because of the infinitesimal output current. However, the different power losses of each cell would lead to the individual DC voltages unbalance. The uneven power losses on the local supplied cell-controllers (including the control circuit and drive circuit) would especially cause the divergence of individual DC voltages, due to their characteristic as constant power loads. To solve this problem, this paper proposes an adaptive voltage balancing module which is designed in the cell-controller board with small size and low cost circuits. It is controlled to make the power loss of the cell a constant resistance load, thus the DC voltages are balanced in zero current mode. Field test in a 10kV STATCOM confirms the performance of the proposed method.

Hybrid Current Mode Controller with Fast Response Characteristics for DC/DC Converter (빠른 응답특성을 갖는 DC/DC 컨버터 하이브리드 전류 모드 제어기)

  • Oh, Seung-Min;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.134-137
    • /
    • 2019
  • A wide-bandwidth current controller is required for fast charging/discharging of super capacitor applications. Peak current mode is generally used to accomplish fast charging/discharging because this mode has fast response characteristics. However, the peak current mode control must have a slope compensation function to restrain sub-harmonics oscillation. The slope must be changed accordingly if the controlled output voltage is varied. However, changing the slope for every changed output voltage is not easy. The other solution, selecting the slope as the maximum value, causes a slow response problem to occur. Therefore, we propose a hybrid mode controller that uses a peak current and a newly specified valley current. Through the proposed hybrid mode control, the sub-harmonic oscillation does not occur when the duty is larger than 0.5 because of the fast response.

Indirect Current Control of Utility Interactive Inverter for Seamless Transfer (연속적인 운전모드의 전환을 위한 계통연계형 인버터의 간접 전류 제어기법)

  • Yu, Tae-Sik;Bae, Young-Sang;Kim, Hyo-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2006
  • Distributed generation (DG) systems go to intentional islanding operation to back up private emergency loads when the main grid is out of electric power. Conventional utility interactive inverters normally operated in current control mode in DG system must change their operation mode into voltage control mode to ensure stable voltage source to the emergency loads when intentional islanding operation occurs. During the transfer between current control mode and voltage control mode, serious transient problem may occur on the output terminal voltage of the utility interactive inverter. This paper proposes reasonal inverter topology and its control algorithm for seamless transfer of DG systems in intentional islanding operation. Filter design guide line and data for a LCL filter that is appropriate for the proposed control algorithm are also presented by the authors.

Analysis of the battery charging and discharging system for spacecrafts (인공위성용 총방전 시스템의 해석)

  • 김영태;김희진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.932-942
    • /
    • 1995
  • A spacecraft power system can be divided into two types : DET system(Direct Energy Transfer system) and PPT system(Peak Power Tracking system). In a DET system employing the regulated bus voltage control method, the battery charger and discharger are widely used for the bus voltage regulation. The battery charger has two different modes of operation. One is the bus voltage regulation mode and the other is the charge current regulation mode. The battery discharger is employed to provide the power when the spacecraft is in the earth's shadow or the sun is eclipsed. The operating mode, charging or discharging, is selected by a power control circuit. In this paper, small-signal dynamic characteristics of battery charging and discharging system are analyzed to facilitate design of control loop for optimum performance. Control loop designs in various operating modes are discussed. Anaylses are verified through experiments.

  • PDF

Improved Space Vector Modulation Strategy for AC-DC Matrix Converters

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli;Wang, Siyao
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.647-655
    • /
    • 2013
  • In this paper, an approach to reduce the common-mode voltage and to eliminate narrow pulse for implemented AC-DC matrix converters is presented. An improved space vector modulation (SVM) strategy is developed by replacing the zero space vectors with suitable pairs of active ones. Further, while considering the commutation time, the probability of narrow pulse in the conventional and proposed SVM methods are derived and compared. The advantages of the proposed scheme include: a 50% reduction in the peak value of the common-mode voltage; improved input and output performances; a reduction in the switching loss by a reduced number of switching commutations and a simplified implementation via software. Experimental results are presented to demonstrate the correctness of the theoretical analysis, as well as the feasibility of the proposed strategy.

A 6-Gb/s Differential Voltage Mode Driver with Independent Control of Output Impedance and Pre-Emphasis Level

  • Bae, Chang-Hyun;Choi, Dong-Ho;Ahn, Keun-Seon;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.423-429
    • /
    • 2013
  • A 6-Gb/s differential voltage mode driver is presented whose output impedance and pre-emphasis level can be controlled independently. The voltage mode driver consists of five binary-weighted slices each of which has four sub-drivers. The output impedance is controlled by the number of enabled slices while the pre-emphasis level is determined by how many sub-drivers in the enabled slices are driven by post-cursor input. A prototype transmitter with a voltage-mode driver implemented in a 65-nm CMOS logic process consumes 34.8-mW from a 1.2-V power supply and its pre-emphasized output signal shows 165-mVpp,diff and 0.56-UI eye opening at the end of a cable with 10-dB loss at 3-GHz.

Automatic Command Mode Transition Strategy of Direct Power Control for PMSG MV Offshore Wind Turbines (자동 지령모드절환 기능을 갖춘 PMSG MV 해상 풍력 발전기의 직접전력제어 방법)

  • Kwon, Gookmin;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.238-248
    • /
    • 2016
  • In this study, an automatic command mode transition strategy of direct power control (DPC) is proposed for permanent magnet synchronous generators (PMSGs) medium-voltage (MV) offshore wind turbines (WTs). Benchmarking against the control methods are performed based on a three-level neutral-point-clamped (NPC) back-to-back type voltage source converter (VSC). The ramping rate criterion of complex power is utilized to select the switching vector in DPC for a three-level NPC converter. With a grid command and an MPPT mode transition strategy, the proposed control method automatically controls the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. The automatic command mode transition strategy of DPC is confirmed through PLECS simulations based on Matlab. The simulation result of the automatic mode transition strategy shows that the proposed control method of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control methods of MPPT and VOC under a step response. The proposed control method helps provide a good dynamic performance for PMSGs MV offshore WTs, thereby generating high quality output power.

Operation modes and Protection of VS(Vertical Stabilization) Converter for International Thermonuclear Experimental Reactor (국제 핵융합실험로용 VS(Vertical Stabilization) 컨버터의 운전모드 및 보호동작)

  • Jo, Hyunsik;Jo, Jongmin;Oh, Jong-Seok;Suh, Jae-Hak;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • This study describes the structure and operation modes of vertical stabilization (VS) converter for international thermonuclear experimental reactor (ITER) and proposes a protection method. ITER VS converter supplies voltage (${\pm}1000V$)/current (${\pm}22.5kA$) to superconducting magnets for plasma current vertical stabilization. A four-quadrant operation must be achieved without zero-current discontinuous section. The operation mode of the VS converter is separated in 12-pulse mode, 6-pulse mode and circulation current mode according to the magnitude of the load current. Protection measures, such as bypass and discharge, are proposed for abnormal conditions, such as over current, over voltage, short circuit, and voltage sag. VS converter output voltage is controlled to satisfy voltage response time within 20 msec. Bypass operation is completed within 60 msec and discharge operation is performed successfully. The feasibility of the proposed control algorithm and protection measure is verified by assembling a real controller and implementing a power system including the VS converter in RTDS for a hardware-in-loop (HIL) facility.

Output Voltage Ripple Analysis of Quantum Series Resonant Converter (QSRC의 출력전압맥동해석)

  • 임성운;권우현;조규형
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.141-149
    • /
    • 1994
  • In this paper, we could find optimum quantum sequence(OQS) to minimize the output ripple voltage of the quantum series resonant converter(QSRC). This sequence control is so general that it is irrelevant to the voltage gain so far as it is operating in the continuous conduction mode(CCM). Further more the dynamic range of QSRC is much extended by the optimum quantum sequence control(OQSC). Througuout the time-domain analysis, the solution of steady state and the boundary condition between continuous and discontinuous mode is QSRC is obtained. This feature is verified by simulations and experiments with good agreements.

  • PDF

Common-mode Voltage Reduction of Three Level Four Leg PWM Converter (3레벨 4레그 PWM 컨버터의 커먼 모드 전압 저감)

  • Chee, Seung-Jun;Ko, Sanggi;Kim, Hyeon-Sik;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.488-493
    • /
    • 2014
  • This paper presents a carrier-based pulse-width modulation(PWM) method for reducing the common-mode voltage of a three-level four-leg converter. The idea of the proposed PWM method is intuitive and easy to be implemented in digital signal processor-based converter control systems. On the basis of the analysis of space-vector PWM(SVPWM) and sinusoidal PWM(SPWM) switching patterns, the fourth leg pole voltage of the three-phase converter called "f leg pole voltage" is manipulated to reduce the common-mode voltage. To synthesize f leg pole voltage for the suppression of the common-mode voltage, positive and negative pole voltage references of f leg are calculated. An offset voltage is also deduced to prevent the distortion of a, b, and c phase voltages. The feasibility of the proposed PWM method is verified by simulation and experimental results. The common-mode voltage of the proposed PWM method in peak-to-peak value is 33% in comparison with that of the conventional SVPWM method. The transition number of the common-mode voltage is also reduced to 25%.