• Title/Summary/Keyword: Voltage stabilization

Search Result 164, Processing Time 0.027 seconds

Soft-Switching Buck Converter Dropped Voltage Stress of a free-Wheeling Diode Using a Single Switching Device (단일 스위칭소자를 이용하여 환류다이오드의 전압스트레스를 강하시킨 소프트-스위칭 벅 컨버터)

  • 이건행;김영석;김명오
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.576-583
    • /
    • 2004
  • This paper presents a buck circuit topology of high-frequency with a single switching device. It solved the problem which arised from hard-switching in high-frequency using a resonant snubber and operating under the principle of ZCS turn-on and ZVS turn-off commutation schemes. In the existing circuit, it has the voltage stress that is almost twice of input voltage in a free-wheeling diode. In the proposed circuit, it has the voltage stress that is lower than input voltage with modifing a location of free -wheeling diode. In this paper, it expained the circuit operation of each mode and analyzed feedback-loop stabilization. Also it confirmed the waveform of each mode with simulation result. The experiment result verified the simulation waveform and compared the voltage stress of a free -wheeling diode in the exsiting circuit with the voltage stress of that in the proposed circuit. Moreover, it compares and analyzes the proposed circuit's efficiency with the hard-switching circuit's efficiency according to the change of load current.

A Study on the Voltage Stabilization Method of Distribution System Using Battery Energy Storage System and Step Voltage Regulator

  • Kim, Byung-ki;Park, Jae-Beom;Choi, Sung-Sik;Jang, Moon-Seok;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • In order to maintain customer voltages within the allowable limit($220{\pm}13V$) as much as possible, tap operation strategy of SVR(Step Voltage Regulator) which is located in primary feeder, is widely used for voltage control in the utilities. However, SVR in nature has operation characteristic of the delay time ranging from 30 to 150 sec, and then the compensation of BESS (Battery Energy Storage System) during the delay time is being required because the customer voltages in distribution system may violate the allowable limit during the delay time of SVR. Furthermore, interconnection of PV(Photovoltaic) system could make a difficultly to keep customer voltage within the allowable limit. Therefore, this paper presents an optimal coordination operation algorithm between BESS and SVR based on a conventional LDC (Line Drop Compensation) method which is decided by stochastic approach. Through the modeling of SVR and BESS using the PSCAD/EMTDC, it is confirmed that customer voltages in distribution system can be maintained within the allowable limit.

Modeling of Power Quality Stabilization using SMES and DVR (SMES 와 DVR을 이용한 전력계통품질 안정화 시스템 모델링)

  • Park, Sung-Yeol;Jung, Hee-Yeol;Kim, A-Rong;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Kim, Hae-Jong;Seong, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2251-2252
    • /
    • 2008
  • Recently, voltage sag from sudden increasing loads is also one of the major problems inside the utility network. In order to compensate the voltage sag problem, power compensation device systems could be a good solution method. In case of voltage sag, an energy source is needed to overcome the energy loss caused by the voltage sag. Superconducting Magnetic Energy Storage (SMES) is a very promising source of this energy due to its fast response of charging and discharging time. Before constructing the power electronic delivering system for the SMES, it is necessary to simulate the system to understand its behavior. Nowadays, a lot of devices have been developed to compensate voltage sag such as Dynamic Voltage Restorer (DVR), Distribution Static Compensator (D-STATCOM) and Uninterruptible Power Supply (UPS). In this paper, focus is given only on DVR system which will be simulated by using PSCAD/EMTDC software.

  • PDF

Study on the De-Q'ing System for the Output Voltage Stabilization of a 200MW Modulator (200MW MODULATOR의 출력안정화를 위한 DE-Q'ING SYSTEM에 관한 연구)

  • Son, Y.K.;Oh, J.S.;Cho, M.H.;Namkung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1612-1614
    • /
    • 1994
  • Modulators Installed in PLS(Pohang Light Source) Linac are composed of a DC high voltage section, a charging section and a discharging section. PFN is charged by a resonant charging mechanism, and discharged by a switching device through the primary of the pulse transformer connected to a load. Charged PFN voltage must be well regulated to obtain stable output pulse voltage at the load. For this purpose, DCHV is controlled by a SCR controller with feedback signal, and PFN voltage is regulated by a De-Q'ing circuit. The full power operation test shows the pulse voltage regulation within ${\pm}0.13%$ with SCR feedback control alone, and within ${\pm}0.08%$ together with De-Q'ing. This paper describes the design concept and operational characteristics of the De-Q'ing circuit.

  • PDF

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

SLI, AC Breakdown Voltage Characteristics of $SF_6/CF_4$ Mixtures Gas in Nonuniform Field (불평등전계에서 $SF_6/CF_4$ 혼합 가스의 SLI, AC 절연내력 특성)

  • Hwang, Cheong-Ho;Sung, Heo-Gyung;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.245-251
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field was performed. The experiments were carried out under AC voltage and standard lightning impulse(SLI) voltage. Breakdown characteristics were investigated for $SF_6/CF_4$ mixtures when AC voltages and standard lighting impulse voltage was applied in a needle-plane. The needle-plane electrode whose gap distance was 3 mm were used in a test chamber. $SF_6/CF_4$ mixtures contained from 0 to 100% $SF_6$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field may be influenced by defects like needle-shaped protrusions. In case of slowly rising SLI voltage and AC voltage it is enhanced by corona-stabilization. This phenomena caused by the ion drift during streamer development and the resulting space-charge is investigated. In non-uniform field under negative SLI voltage the breakdown voltage was increase linearly but under positive SLI voltage the breakdown voltage increase non-linearly. The breakdown voltage in needle-plane electrode displayed N shape characteristics for increasing the content of $SF_6$ at AC voltage. $SF_6/CF_4$ mixture has good dielectric strength and arc-extinguishing properties than pure SF6. This paper presents experimental results on breakdown characteristics for various mixtures of $SF_6/CF_4$ at practical pressures. We could make an environment friendly gas insulation material with maintaining dielectric strength by combing $SF_6\;and\;CF_4$ which generates a lower lever of the global warming effect.

Installation Methodology of Parallel Ground Conductor and SVL for Single Point Bonding System on Underground Power Cable (지중 전력 선로 편단접지 시스템에서의 병행지선 및 SVL 설치방안)

  • Ha, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.119-121
    • /
    • 2008
  • In underground power cable system, the device for limiting over-voltage is needed when transient over-voltage break out between sheath and ground. For this reason, the SVL(Sheath Voltage Limiter) has been applied on weak points. But the broken SVLs which are installed on the single point bonding system on underground cable are frequently found. In this paper, EMTP(Electromagnetic Transient Program) is utilized to analyze effects on the installation methodology of the parallel ground conductor and SVL for the single point bonding system on the underground cable. The result shows that the proposed installation methodology can be applied for single point bonding system and contribute for power system stabilization.

  • PDF

Reducing the Harmonics of Static Var Compensator Using Multi-Step Inverter (멀티-스텝 인버터를 이용한 무효전력 보상장치의 고조파 저감)

  • Park, Hyun-Chul;Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.19-22
    • /
    • 2001
  • For stabilization and improving power factor in the power lines, various Static Var Compensators(SVC) have been considered to be installed and partly applicated already. With all these merits of the SVC, it stil has demerits, principally evoking harmonic problems. So far, many harmonic reduction type inverters have been used in various parts. In this paper, the reactive power is controlled by amplitude of the output voltage. This paper propose that the multiple voltage source inverter have controllable power factor made by load vary at receive-stage as lagging and leakage control. The theoretical analysis on this system was confirmed through the computer simulation and the experiments.

  • PDF

A Study on Phenomena of Watertree and Dielectric Breakdown in XLPE (XLPE의 수트리와 절연파괴 현상에 관한 연구)

  • Lee, Sung-Il;Ryu, Sung-Lim;Park, Il-Kyu;Lee, Ho-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.262-265
    • /
    • 2001
  • In order to investigate the water tree degradation behavior on XLPE cable, direct voltage of 200 to 800V has been applied to the material at $50^{\circ}C\sim100^{\circ}C$. and the water tree property has been correlated with voltage and temperature in this study. The leakage current was shown to increase as temperature increased and the Ohm's law was generally satisfied in this experiment though some experimental errors were found. The leakage current was shown to decrease and reach to the stable state with time. It was also shown that the time for the stabilization of leakage current was lessened as voltage increased

  • PDF

Steady state Operatong Characteristics (PWM Buck-Boost AC-AC 컨버터의 정상상태 동작특성)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.430-434
    • /
    • 2002
  • Recently, lot of researchers pay attention to custom power equipments for power quality improvement, especially, voltage stabilization equipment using PWM AC-AC converter. In this paper, voltage regulation system with PWM Buck-Boost AC-AC converter is proposed and then the system is modelled and analyzed by using of Circuit DQ transformation whereby steady state characteristics such as equations for voltage gain and power factor are obtained. The equations become guide line for system design by showing the effect on system operations. Finally, some experiment will show validity of analysis.

  • PDF