• Title/Summary/Keyword: Voltage restoration

Search Result 60, Processing Time 0.025 seconds

Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems (배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법)

  • Park, Jaehyeong;Jeon, CheolWoo;Lim, Seongil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

SERVICE RESTORATION OF POWER DRSTRIBUTION SYSTEM IN CONSIDERATION OF PROTECTIVE DEVICES (보호기기를 고려한 배전계통 복구방안)

  • Lee, Seung-Jae;Kim, Tae-Hyung;Yoon, Jin-Young;Kim, Kuk-Hun;Kim, Hak-Moo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.48-50
    • /
    • 1993
  • One of the most important functions in the distribution automation is the service restoration. This paper proposes the new method which considers not only constraints of voltage, line current and bank capacity but also the operating characteristics of protective devices such as OCR and reclosers.

  • PDF

Primary Restorative Transmission Line Selection for Myanmar's Electric Power System

  • Kim, Yong-Hak;Song, In-Jun;Jang, Byung-Tae;An, Yong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • Power system restoration following a massive or complete blackout starts with energizing the primary restorative transmission system. During this primary restoration process, unexpected overvoltage may happen due to nonlinear interaction between the unloaded transformer and the transmission system. In the case of the Myanmar electric power system, there are so many wide outage experiences, including complete blackout cases, caused by 230kV line faults and so on. Consequently, Myanmar's system operators have been well trained to deal with wide blackouts. Howver, system blackout restoration has been conducted by relying on the experience of only a few specialists. So, more scientific analysis is required to meet the requirements necessary to ensure fast and reliable system restoration. This paper presents analytical results on the primary restorative transmission system of Myanmar, focusing on the problems during the early restoration process. Methodologies are presented that handle load pick-up, terminal voltage and the reactive capability limitation of black-start generators to compensate the Ferranti effect. Static and dynamic simulation with the PSSolution and EMTDC programs respectively for the six cases are performed in order to select the primary restorative transmission lines.

The Self-Fault Restoration Methodology based on the Recloser in the Distribution Systems (배전계통 리클로우저 기반의 자율적 고장복구 방법론)

  • Ko, Yun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1681-1688
    • /
    • 2009
  • This paper proposes a new fault restoration method which adopts the recloser as top agent to release the problems of the data concentration and fault processing delay of the existing DAS(distribution Automation System) under the ubiquitous distribution system. In proposed method, top agent collects the data based on the multi-casting communication with the tie switches of the interconnection point, and then selects a closed switch(tie switch) to transfer the sound outage load to other feeders based on the heuristic search strategy step by step until the load transfer work is finished. Here, a new heuristic rule is developed which can guarantee the relational load balancing and line loss from the collected voltage data. Finally, the several faults are simulated for typical multi-section and multi-interconnection distribution system to prove the effectiveness of the proposed strategy, in particular, for each simulation cases, the load balancing index and line loss index of the obtained solution from the proposed method is compared with those of all of feasible solutions.

Evaluation of Power Flow Control Strategy and DC-link Voltage Regulation for DC Microgrid

  • Nguyen, Thanh Van;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.416-417
    • /
    • 2019
  • In this paper, an effective power flow control strategy (PFCS) based on the centralized control approach and a DC-link (DCV) restoration algorithm for DC microgrid (DCMG) are presented. By investigating the statuses of system power units, eleven operating modes are given to ensure the system power balance under various conditions. To avoid the system power imbalance caused by the delay of grid fault detection, a reliable DCV restoration algorithm is proposed. In the proposed scheme, when an abnormal variation of the DCV is detected, the battery instantly starts a local emergency control mode to restore the DCV to the nominal value regardless of the control mode from the central controller. The simulations and experiments are carried out to prove the effectiveness of the PFCS and the proposed DCV restoration algorithm.

  • PDF

An Expert System for Optimal Load Transfer in Distribution Systems (배전계통에서의 최적 부하절체를 위한 전문가 시스템)

  • 문영현;최병윤;김세호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.903-911
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults and scheduled outage, operators need to identify neighboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer in fault restoration and scheduled outage. Also, the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss are considered. This expert system can propose the optimal load transfer method by analyzing the system state and considering the constraints.

  • PDF

Energy Management Method of DC Microgrids by Using Voltage Compensation Term (전압 변동 보상항을 이용한 직류 마이크로그리드의 에너지 관리 기법)

  • Ko, Byoung-Sun;Lee, Gi-Young;Kim, Seok-Woong;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.328-335
    • /
    • 2018
  • An energy management method of DC microgrids using voltage compensation term is proposed in this study. Droop control is often implemented to operate the DC microgrid. However, the droop control necessarily generates voltage variation. Energy flow is also difficult to control because the droop control mainly focuses on proportional load sharing. To solve these problems, the voltage compensation term based on the low-bandwidth communication is used to determine the operating band of the converter. Energy management and voltage variation minimization can be achieved by judging the operating band according to the magnitude of voltage compensation term. The validity of the proposed method is verified by simulation and experiments.

Optimization of Harmonic Tuning Circuit vary as Drain Voltage of Class F Power Amplifier (Class F 전력 증폭기의 드레인 전압 변화에 따른 고조파 조정 회로의 최적화)

  • Lee, Chong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.102-106
    • /
    • 2009
  • This paper presents the design and optimization of output matching network according to envelope for class F power amplifier(PA) which is to apply to envelope elimination and restoration(EER) transmitter. In this paper, to increase the PAE of class F power amplifier which applies to EER transmitter, the varactor diode has been used on output matching network. As envelope changes, it optimizes constitution of harmonic trap that is short circuit in 2nd-harmonic and is open circuit in 3rd-harmonic. When drain voltage changes from 25 V to 30 V, some percentage is improved in the PAE.put the abstract of paper here.

Principle of restoration ecology reflected in the process creating the National Institute of Ecology

  • Kim, A. Reum;Lim, Bong Soon;Seol, Jaewon;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.105-116
    • /
    • 2021
  • Background: The creation of the National Institute of Ecology began as a national alternative project to preserve mudflats instead of constructing the industrial complexes by reclamation, and achieve regional development. On the other hand, at the national level, the research institute for ecology was needed to cope with the worsening conditions for maintaining biodiversity due to accelerated climate change such as global warming and increased demand for development. In order to meet these needs, the National Institute of Ecology has the following objectives: (1) carries out studies for ecosystem change due to climate change and biodiversity conservation, (2) performs ecological education to the public through exhibition of various ecosystem models, and (3) promotes regional development through the ecological industry. Furthermore, to achieve these objectives, the National Institute of Ecology thoroughly followed the basic principles of ecology, especially restoration ecology, in the process of its construction. We introduce the principles and cases of ecological restoration applied in the process. Results: We minimized the impact on the ecosystem in order to harmonize with the surrounding environment in all the processes of construction. We pursued passive restoration following the principle of ecological restoration as a process of assisting the recovery of an ecosystem degraded for all the space except in land where artificial facilities were introduced. Reference information was applied thoroughly in the process of active restoration to create biome around the world, Korean peninsula forests, and wetland ecosystems. In order to realize true restoration, we pursued the ecological restoration in a landscape level as the follows. We moved the local road 6 and high-voltage power lines to underground to ensure ecological connectivity within the National Institute of Ecology campus. To enhance ecological diversity, we introduced perch poles and islands as well as floating leaved, emerged, wetland, and riparian plants in wetlands and mantle communities around the forests of the Korean Peninsula in the terrestrial ecosystem. Furthermore, in order to make the public aware of the importance of the intact nature, the low-lying landscape elements, which have disappeared due to excessive land use in most areas of Korea, was created by imitating demilitarized zone (DMZ) landscape that has these landscape elements. Conclusions: The National Institute of Ecology was created in an eco-friendly way by thoroughly reflecting the principles of ecology to suit its status and thus the impact on the existing ecosystem was minimized. This concept was also designed to be reflected in the process of operation. The results have become real, and a result of analysis on carbon budget analysis is approaching the carbon neutrality.

Governor-Response Power Flow Based Long-term Voltage Stability Simulation (조속기 응동 조류계산 기반 장기 전압안정도 모의)

  • Song, Hwa-Chang;Kim, Young-Gon;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.160-162
    • /
    • 2008
  • This paper present a practical method for long-term voltage stability simulation based on a governor-response power flow. Governor-response power flow (GPF) is to model the long-term system response in the interval from 3 to 30 seconds after disturbance. In this paper, it is assumed that the GPF model ran capture the system state before load restoration starts in contingent conditions. This paper discusses the applicability of GPF to long-term simulation for voltage stability analysis and then explains the GPF formulation and the procedure of the proposed simulation. In addition the paper includes the simulation results with the modified New England 39-bus system.

  • PDF