• 제목/요약/키워드: Voltage error compensation

검색결과 124건 처리시간 0.028초

A Novel Method for Compensating Phase Voltage Based on Online Calculating Compensation Time

  • Wang, Mingyu;Wang, Dafang;Zhou, Chuanwei;Liang, Xiu;Dong, Guanglin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.333-343
    • /
    • 2019
  • Dead time and the nonideal characteristics of components all lead to phase voltage distortions. In order to eliminate the harmful effects caused by distortion, numerous methods have been proposed. The efficacy of a method mainly depends on two factors, the compensation voltage amplitude and the phase current polarity. Theoretical derivations and experiments are given to explain that both of these key factors can be deduced from the compensation time, which is defined as the error time between the ideal phase voltage duration and the actual phase voltage duration in one Pulse Width Modulation (PWM) period. Based on this regularity, a novel method for compensating phase voltage has been proposed. A simple circuit is constructed to realize the real-time feedback of the phase voltage. Utilizing the actual phase voltage, the compensation time is calculated online. Then the compensation voltage is derived. Simulation and experimental results show the feasibility and effectivity of the proposed method. They also show that the error voltage is decreased and that the waveform is improved.

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

측정용 전압 변성기 오차 보상 알고리즘 (Compensation Algorithm for a Measurement Voltage Transformer)

  • 강용철;박종민;이미선;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

Compensation of Current Offset Error in Half-Bridge PWM Inverter for Linear Compressor

  • Kim, Dong-Youn;Im, Won-Sang;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1593-1600
    • /
    • 2015
  • This paper proposes a novel compensation algorithm of current offset error for single-phase linear compressor in home appliances. In a half-bridge inverter, current offset error may cause unbalanced DC-link voltage when the DC-link is comprised of two serially connected capacitors. To compensate the current measurement error, the synchronous reference frame transformation is used for detecting the measurement error. When an offset error occurs in the output current of the half-bridge inverter, the d-axis current has a ripple with frequency equal to the fundamental frequency. With the use of a proportional-resonant controller, the ripple component can be removed, and offset error can be compensated. The proposed compensation method can easily be implemented without much computation and additional hardware circuit. The validity of the proposed algorithm is verified through experimental results.

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

Compensation of Cross Talk Error for Optical Voltage Sensors

  • Cho, Jae-Kyong
    • Journal of the Optical Society of Korea
    • /
    • 제11권4호
    • /
    • pp.177-182
    • /
    • 2007
  • This paper discusses the errors associated with electric field cross talk for optical voltage sensors in a three-phase electric system and provides a solution to compensate the errors. For many practical conductor configurations, the electric field cross talk may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the cross talk and built an electronic circuits based on it. The mechanism of the compensation and the corresponding error reduction were discussed.

히스테리시스 특성을 고려한 전압 변성기 오차 개선 방법 (Method for improving the accuracy of a voltage transformer considering hysteresis characteristics)

  • 강용철;이범은;박종민;차선희;장성일;김용균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.208-209
    • /
    • 2006
  • Voltage Transformer is used to transform high voltage into low voltage to input signal of protection relay. Most of the Voltage Transformers use the iron core which maximizes the flux linkage. The ratio of the Voltage Transformer depends on the transformer turns ratio. The current which flows in the Voltage Transformer has non-linear characteristic caused by hysteresis of the iron core, it causes a voltage loss in the winding impedances which makes measurement errors. This paper describes an error compensation method considering hysteresis characteristic. The proposed compensation method improves error by calculating the primary current from the exciting current of the hysteresis loop in the Voltage Transformer, compensating the voltage loss.

  • PDF

단상 계통 연계형 인버터의 빠른 동특성을 갖는 계통 전압 센싱 DC 오프셋 보상 알고리즘 (DC offset Compensation Algorithm with Fast Response to the Grid Voltage in Single-phase Grid-connected Inverter)

  • 한동엽;박진혁;이교범
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1005-1011
    • /
    • 2015
  • This paper proposes the DC offset compensation algorithm with fast response to the sensed grid voltage in the single-phase grid connected inverter. If the sensor of the grid voltage has problems, the DC offset of the grid voltage can be generated. This error must be resolved because the DC offset can generate the estimated grid frequency error of the phase-locked loop (PLL). In conventional algorithm to compensate the DC offset, the DC offset is estimated by integrating the synchronous reference frame d-axis voltage during one period of the grid voltage. The conventional algorithm has a drawback that is a slow dynamic response because monitoring the one period of the grid voltage is required. the proposed algorithm has fast dynamic response because the DC offset is consecutively estimated by transforming the d-axis voltage to synchronous reference frame without monitoring one cycle time of the grid voltage. The proposed algorithm is verified from PSIM simulation and the experiment.

The Compensation of Pixel Voltage Error for a-Si TFT LCDs Regarding the Input Gamma Voltage

  • Kang, Seung-Jae;Lee, Jun-Pyo;Park, Young-Bae;Moon, Hoi-Sik;Kong, Hyang-Shik;Kim, Kyung-Seop;Kim, Sang-Su;Kim, Su-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.560-562
    • /
    • 2002
  • The liquid crystal(LC) pixel capacitance Clc, which varies as a function of applied pixel voltage, is a main factor of pixel voltage errors on input gamma voltage, and therefore of the electro-optics(E-O) characteristics of LC pixel for a-Si TFT LCDs. The pixel voltage error(${\Delta}$Vp) for input gamma voltage was simulated for 14.1 inch diagonal XGA panel. An agreement between the experimental results and simulation was satisfactory for the gamma voltage compensation, ${\Delta}$Vp of the input gamma voltage. The proposed compensation method was successfully introduced to a 14.1 inch diagonal XGA panel, and a remarkable improvement of image sticking was achived.

  • PDF