• Title/Summary/Keyword: Voltage Unbalance Factor

Search Result 66, Processing Time 0.024 seconds

Analysis of the Unbalance of DC Link Voltage in 12-step Inverter with 2-Phase Chopper Preregulator (2상 쵸퍼 Preregulator를 갖는 12-step 인버터에서의 DC Link단 전압 불평형 해석)

  • Nho, Eui-Cheol;Kim, In-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.258-260
    • /
    • 1995
  • This paper deals with the voltage unbalance of DC link voltage in series connected two 6-step inverters with double chopper preregulator. Each output of the 6-step inverter is connected to each transformer. The secondary windings of one of the transformers is zig-zag connected and the other star connected. The secondary terminals of the two transformers are series connected which makes 12-step output voltage waveform. In this case, the characteristics of the two transformers are rather different each other. The difference results in the voltage unbalance of the two 6-step inverter input capacitor voltages which make the DC link voltage. The degree of the voltage unbalance is analysied with the variations of load power, load power factor and % impedance of the transformer.

  • PDF

A New Control Algorithm for Instantaneous Voltage Sag Corrector (순시전압강하 보상기의 새로운 제어 기법)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.172-176
    • /
    • 2001
  • In this paper, a new detection algorithm of faulted voltages under the unbalanced condition and a control algorithm of the instantaneous voltage sag corrector (IVSC) are proposed. To quantify the unbalance under fault conditions, the voltages are decomposed into two balanced three-phase systems using the symmetrical components of positive and negative sequence voltages, which is defined by magnitude factor (MF) and unbalance factor (UF). New control algorithm based on MF and UF values for instantaneous voltage compensation are proposed and verified through the PSCAD/EMTDC simulation and experimental results.

  • PDF

Comparative Analysis of Voltage Unbalance Factor on the use of Linear and Non-linear loads in Three-phase Four-wire Low Voltage Distribution Line (3상 4선식 저압 배전선로에서 선형 및 비선형 부하의 사용시 전압 불평형률 비교 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.587-592
    • /
    • 2017
  • In the three-phase four-wire low-voltage power distribution equipment, single-phase and three-phase load have been used mainly mixed. Also linear and nonlinear loads have been used together in the same conditions. In a three-phase four-wire distribution line, the current distribution of three-phase linear load is almost constant in each phase during driving or stopping, but the single-phase load is different from each other for each phase in accordance with the operation and stop. So that the voltage unbalance is caused by the current difference of each phase. In the three-phase four-wire distribution system, non-linear load is used with linear load. The presence of single-phase nonlinear loads can produce an increase in harmonic currents in three-phase and neutral line. It can also cause voltage unbalance. In the present study, we analyzed for the voltage unbalance fluctuations by the operation pattern of the single and three-phase linear and non-linear load in three-phase four-wire low voltage distribution system.

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage with Harmonics Components (고조파 성분이 포함된 전압 불평형 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.134-140
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are usually balanced and connected to three power systems. However, in the user power distribution systems, partial loads are single & three phase and unbalanced, generating voltage unbalance by the impedance mismatching. Voltage unbalance has detrimental effects on three-phase induction motors, including over heating, line-current unbalance, derating, torque pulsation, low efficiency, etc. This paper presents a scheme on operation states of a three-phase induction motor under the unbalanced voltages with harmonics components. Three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting not only fundamental but also harmonics components. Harmonic components at the voltage unbalanced factor(VUF) of the three-phase source voltages can then be examined the different values of VUF on machine's operation characteristics.

Analysis on the Operation Characteristics of Induction Motor Operated by Asymmetric Unbalanced Voltage (비대칭 불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Sohn, Hong-Kwan;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.58-64
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance is a condition in a polyphase system in which the rms values of the line-to-line voltages or the phase angles between consecutive line-to-line voltages, are not all equal. Slight voltage unbalance generates a disproportionately high current unbalance at the motor stator winding. This paper presents a scheme on operation states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

A Study on Condenser Characteristics at the Series Connection of Condenser and Reactor Under Voltage Unbalance (전압 불평형에서 콘덴서와 리액터의 직렬 연결시의 콘덴서의 특성 분석)

  • Kim, Il-Jung;Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Sung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.325-329
    • /
    • 2010
  • Capacitor has been used principally for the power factor compensation long ago. However now it does as passive filter to reduce harmonics of nonlinear load with reactor. Most of the customer's low-voltage feeder has been designed with approximately balanced and connected at the 3 phase four wire system. But voltage and current unbalance is appeared by the mixing operation of single or three phase load etc. The addition of reactor at the condenser may rise its terminal voltage. Voltage and current values above rating can act on electrical stress on the condenser. In this paper, we calculated and measured that voltage, current and capacity of condenser are changed under the voltage balance. We conclude that magnitude and deviation of phase voltage act on major point of electrical stress.

Characteristics Analysis for Voltage, Current & Capacity of Condenser at Voltage Unbalance (전압 불평형시 콘덴서 전압, 전류, 용량 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.145-151
    • /
    • 2010
  • Voltage unbalance is regarded as a power quality problem of significant at the user application. Although the voltages are quite well balanced at the transmission system, the voltage level of utilization can be unbalanced due to the unequal system impedances and the unequal distribution of single phase loads. Capacitor is generally used for power-factor compensation and reducing harmonics of non linear load with reactor. If voltage unbalance exists, current unbalance is generated and it will be reflected in the capacity variance. When the reactor and condenser are used at the same location, generally its trouble rate is high. And it is very important checking out that how the variance of voltage, current and capacity of condenser is proceeded by the voltage unbalance. In this paper, we calculated that voltage, current and capacity of condenser are within the tolerance limit of official regulations in the event of voltage unbalance with/without reactor.

A Study on the Characteristic of Capacitor by Asymmetrical Voltage Unbalance (비대칭 전압 불평형에 의한 커패시터 동작 특성)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • As the increasing of Non-linear load, we have been growing interest for the harmonics. Harmonics has been focused on the current component rather than voltages. Voltage harmonics can be mainly generated at the PCC with non-linear load and act on voltage unbalance. Voltage harmonics can be enlarged at the capacitor with low impedance as frequency increases. Capacitor is basically used for the power-factor compensation and sometimes as the passive filter. Small voltage of low-order acts on quite a few at the capacitor by the current increase. Capacitor has easily fall under by harmonic components. In this paper, we measured the magnitude and phase angle of asymmetrical voltage with harmonics components at the PCC and calculated with the same condition. we concluded that voltage harmonics of higher order increase each current component but have a little effect on capacitor rating.

Analysis on the Operation Characteristics of induction motor by asymmetric voltage unbalance (비대칭 전압불평형에 의한 유도전동기의 동작특성 해석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Jeong, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.110-112
    • /
    • 2003
  • This paper describes a detailed performance of induction motor with asymmetric voltage unbalance generated at the customer distribution system. The simulation results show that the change of current and torque, with the increase of unbalance factor, are more larger and has an important effect on load system.

  • PDF

Active Power Filter Compensating for Source Voltage Unbalance/Current Harmonics and Power Factor Correction (전원 전압의 불평형과 고조파 전류 보상 및 역률 개선 기능을 가지는 능동전력 필터)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.787-790
    • /
    • 2004
  • In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics and power factor correction in unified active power filter systems combined with shunt passive filters is proposed, where no low/high-pass filter are used in deriving the reference voltage for compensation. Using digital all-pass filters, the phase angle and the reference voltages compensating for harmonic current and unbalanced voltage are derived from the positive sequence component of the unbalanced voltage. The amplitude of d-axis current in a series filter is controlled as zero for power factor correction. The validity of the proposed control scheme has been verified by experimental results.

  • PDF